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~ distribution of radiation from that surface. The existence of such a transfer
function implies a shift-invariant scattering function which does not change
shape with the angle of the incident beam. This result greatly reduces the
quantity of data required to completely characterize the scattering properties
‘ of ‘a surface. For a large class of well-behaved surfaces this transfer func-
tion is described in terms of only the rms surface roughness and the surface
autocovariance function. It thus provides a straightforward solution to the
inverse scattering problem (i.e., determining surface characteristics from
scattered light measurements). Once the surface characteristics are known, the
same theory provides an equally simple method of predicting the wavelength
dependence of the scattered light distribution.
An extensive experimental program has accompanied this theoretical develop-
ment.« The apparatus and experimental procedures utilized in measuring the
b angular distribution of light scattered from a variety of optical surfaces
for several different angles of incidence and wavelengths are described in
detail. Experimental verification of the shift-invariant scattering function
has been successfully demonstrated for smooth surfaces (op<<A). The scattered
light measurements from rough (diffusely reflecting) surfaces results in a
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‘f Scattering function which is shift-invariant over only a small range of angles
F: and departs significantly from the predicted behavior at large scattering
o angles, '

: A computer program has been developed that operates upon scattered light

b data to yield the total integrated scatter, the surface transfer function, the
3 rms surface roughness, and the surface autocovariance function. Although

3 accurate determination of microstructure on optical surfaces is extremely dif-
ficult to accomplish by direct measurement (thus the motivation for attempting
to solve the inverse scattering problem), favorable comparisons of predicted
surface chavacteristics with the corresponding measured quantitiss have been
demonstrated for both smooth surfaces and moderately rough surfaces. In

[ addition, experimental verification of the inverse scattering program was
accomplished indirectly by supplying scattered light data of one wavelength as
input to the inverse scattering program in order to determine the relevant
surface characteristics; then this information was used to predict the scat-
L tering function at a different wavelength. Excellent agreement with the

Y measured scattering function at that wavelength was achieved.

/ Since the above technique involves numerical computations on sampled data,
an analytical expression for a wavelength scaling law is not required to deter-
mine the scattering function at any desired wavelength, However, in order to
2 gain insight into the wavelength dependence of surface scatter phenomena, a
wavelength scaling law for smooth surfaces was derived and verified. This
scaling law consists of a change in the scattering angle as well as a change
in the amplitude of the scattering function with changes in wavelength. It
therefore provides a valuable tool for predicting the scattering behavior in
certain angular regions or wavelength ranges where direct measurements are

? difficult to obtain.
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; INTRODUCTION

The relationship between surface micro-structure and radiant
« energy scattering plays an important role in many areas of technical
interest. These include the trade-off between cost and performance in
the fabrication of optical surfaces, design considerations for stray-
light rejection systems, evaluation of machined metal mirrors for high-
energy laser applications, laser-radar backscatter signature programs,
and a host of other applications requiring extensive scattering data.
If the scattering mechanism were completely understood, surface prepa-

ration techniques or measurement programs in many of these areas could

possibly be changed to obtain more favorable results.

Background

If a propagating wave is incident upon a perfectly plane sur-
face, the reflected wave is concentrated in the specular direction as
determined by the well-known laws of reflection. Another idealized
surface is the perfectly diffuse reflector which scatters light accord-
ing to Lambert's cosine law. A more physically realistic situation is
shown in Fig. 1.1, which illustrates the optical scattering that occurs
when lighw is reflected from a rough surface. If the surface is not

too rough the reflected light consists of a specular component plus a
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Fig., 1.1, Schematic Representation of Reflectance
from a Rough Surface.

diffuse component which is scattered over a wide range of angles cen-
tered upon the specular beam.

One of the earliest investigators of scattering from a rough
surface was Lord Rayleigh. In 1896 (Rayleigh, 1945) he was investiga-
ting the reflection of acoustic waves, and later (Rayleigh, 1901) he
noted the effects of poorly polished surfaces on optical performance.
He examined the effects of surface roughness, wavelength, and angle of
incidence on the reflected beam., Chenmoganadam (1919} derived a theory
of scattered light based on the phase shift of the reflected beam due

to the rough surfare.




However, it was not until the problem of background clutter in
radar applications became apparent that a determined effort was made
to solve the scattering problem for random surfaces. For example, scat-
tering from the sea motivated the work of Davies (1954) as well as
other; /slakc, 1950; Barrick, 1970; Bass, 1968; Beard, 1961; and Fuks,
1966) . Considerable work has also been done in attempts to explain

radar retlection from the moon (Daniels, 1961; Evans and Pettengill,

1963; Fung and Moore, 1964; Fung, 1967; and Hagfors, 1964).

Random rough surfaces have been treated in two different ways.
Rough surfaces made up of a random array of objects or shapes with
known scattering characteristics were investigated by Ament (1960),
Twersky (1957), Spetner (1958), and Peake (1959). The other approach
taken by Isakovich (1952), Ament (1953), Eckart (1953), Feinstein
(1954), navies (1954), and Beckmann (1957), treats the rough surface as
a stochastic process.

S:nce optical surfaces clearly fall into the second classifica-
tion of random surfaces, Bennett and Porteus (1961) expanded and experi-
mentally investigated the scattering theory of Davies (1954). From this
and subsequent work (Bennett, 1963; and Porteus, 1963) the reflectance
properies of samples with a weasured surface roughness were directly
compared t2> theory with good results. Interest in these measurements
led to investigations at the Optical Sciences Center, University of
Arizona, by Mott (1971), McKenney, Orme and Mott (1972), Orme (1972),
DeBell and Harvey (1974), Shack and DeBell (1974), and Shack and

Harvey (1975).
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The Bidirectional Reflectance Distribution Function (BRDF) was
introduced by Nicodemus (1970) as a quantity which completely describes
the reflectance (or scattering) properties of a given surface.
Bidirectional reflectance data for spectral regions extending into the
infrared have been collected in connection with heat-transfer analysis.
Another area of interest involves the possibilities for spectro-
chemical analysis by reflected radiation, principally in connection
with remote sensing of the earth and other planetary surfaces. Also
BRDF measurements have been made on many proposed baffle materials for
use in the Large Space Telescope program (Breault and Fannin, 1973).
Recently there has been a great deal of activity in the area of BRDF
measurements of machined metal mirrors to be used in high-energy laser
applications (Young, 1975; Curcio, 1975; Decker, Bennett, and Bennett,

1975; Church and Zavada, 1975; and Stover, 1975).

Dissertation Content

In this dissertation the scattering of light from optical
elements is considered to be solely a surface phenomenon. Light-
scattering from optical surfaces is then treated as a diffraction
process in which the pupil function has random phase variations in
addition to any existing amplitude variations. A complete Fourier
treatment of near-field scalar diffraction theory is therefore devel-
oped in Chapter 2. This diffractiou theory is generalized in Chapter 3
to include phase perturbations that lead to scattered radiation. Appro-
priate assumptions are then made concerning the statistical properties

of optical surfaces and an analytical expression is obtained for the




transfer function of a scattering surface. The existence of such a

transfer function implies a shift-invariant scattering function which

does not change shape with the angle of the incident beam. This result
greatly reduces the quantity of data required to completely character-
" ize the scattering properties of a surface. For a large class of well-
behaved surfaces this transfer function is described in terms ot only
the rms surface roughness and the surface autocova:iance function. It
thus provides a straightforward solution to the inverse scattering
problem (i.e., determining surface characteristics from scattered light
measurements). Once the surface characteristics are known, the same
theory provides an equally simple method of predicting the wavelength
dependence of the scattered light distribution,

An extensive experimental program has accompanied this theoreti-
cal development. Chapter 4 describes in detail the apparatus and experi-
mental procedures utilized in measuring the angular distribution of ligni
scattered from a variety of optical surfaces for several different angles
of incidence and wavelengths. The results of these experiments are
reported in Chapter 5 and compared to theoretical predictions with
generally good agreement.,

Consistent with most research efforts, not all questions con-
cerning this topic are completely answered in this dissertation. After
a brief summary of resulls, Chapter 6 is therefore devoted to a few
comments concerning new theoretical considerations and suggestions for

future research.
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CHAPTER 2

A FOURIER TREATZENT OF NEAR-FIELD
SCALAR DIF+RACTION THEORY

\

The phenomenon of diffraction involves a wave field incident
upon one or more objects or apertures with absorbing or conducting
surfaces. The calculation of the wave field emerging from such a
diffracting system is the goal of all diffraction theories.

It should be emphasized that both the Kirchhoff a:d Rayleigh-
Sommerfeld theories, as well as the present discussion in this paper,
treat light as a scalar phenomenon. (For a detailed treatment cf the
historical development of diffraction theory, see Goodman, 1968,
pPp. 30-56.) Such an approach entirely neglects the fact that the
various components of the electric and magnetic field vectors are
coupled through Maxwell's equations and cannot be treated independently.

Microwave experiments have shown that scalar theory yields
very accurate results provided that: (1) the diffracting aperture is
large compared to a wavelength, end (2) the diffracted wave field is
observed far from the aperture. It is significant that although the
present treatment is limited by being a scalar theory, the above
approximations are not imposed during the mathematical formulation as
they are in the Kirchhoff theory. Furthermore, the following devel-
opment provides much more insight than the conventional Rayleigh-

Sommerfeld theory.
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The Diffracted Wave Field
as a Superposition of Plane Waves

The fundamental diffraction problem consists of two parts: (1)
determining the effect of introducing the diffracting screen upon the
field immediately behind the diffracting screen, and (2) determining
how it affects the field downstream from the diffracting screen (i.e.,
what is the field immediately behind the diffracting screen and how
does it propagate).

Consider first the propagation problem and let the complex
amplitude distribution of the cptical disturbance in plane P, be repre-
sented by the scalar function U,(%£,§;0). This scalar disturbance in P,
will be considered the only radiation contributing to the field
U(£,§;8) in plane P (see Fig. 2.1), & has a parametric relationship
since it is a function of the observation plane. Note that a scaled

coordinate system is utilized in which & = x/X, § = y/X, & = z/}X.

Initial Conditions

It will be assumed that the complex amplitude of any monochro-
matic optical disturbance propagating through free space must obey the
time-independent wave equation (Helmholtz equation). We will also
assume that the Fourier transform of the scalar field U,(®,0;0) exists.

This is not a severe restriction, however, as Bracewell (1965) points
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Geometry of Planes Py and P.

Fig. 2.1.

S

o ol one ooy apaTias Lot it aped s st R

W



s
R
;
o
7
e
¥
7
e
4

e

T
s

L

o

B3 S

L S AN e e e

5
e
E

out that physical possibility is a valid sufficient condition for the

existence of a Fourier transform.

The Direct Application of Fourier Transform Theory

We can thus define the following Fourier transform relation-

ships that exist for planes Py and P.

A,(a,B;0) = JI Uy(2,5;0) e 2T (@288) gagp )
U,(2.9;0) = ﬂ Ay(a,8;0) e“2m(98+80) 3o 2)
A(a,8;8) = JI U(e,g;2) e P2 (2+BY) gpgp (3)
U(E,5:5) = ﬁua,s;z) et2m(a2489) 5 40 )

Equations (2) and (4) indicate that the monochromatic scalar
wave field in planes Py and P can be decomposed into plane wave compo-
nents whose amplitudes are a function of the direction cosines of the
propagation vector. The functions 4,(x«,8;0) and A(a,B;2) will be

referred to as the direction cosine spectrum of plane waves coatributing

to the disturbance U,(2,5;0) and U(2,7;2) respectively. The direction
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cosine spectrum of plane waves is used herc in lieu of the angular
spectrum of plane waves discussed by Ratcliffe (1956) and others. This

is consistent with a more general treatment which is not restricted to

small angles.
In the scaled coordinate system 2 = A2v2, and k2 = A2%k? =

(27)2. Hence the Helmholtz equation becomes

(02 + (2m2Juc2.4:8) = o. (5)
Now by applying Eq. (4) and requiring the individual plane wave
components to satisfy the Helmholtz equation, we find
12ny8 (6)

A(a,B38) = Ay(a,B;0) e

where

y = /1 - aZ - B2,

The Transfex: Function of Free Space

Since Eq. (6) relates the Fourier transforms of the scalar

fields in plsnes Py and P it can be rewritten in terms of a transfer
function for free space, H(a,B;%)

o AlwBi®) _ i2mya
He,8:8) = 4 ,8:0) ° y (M

We have thus far applied no restrictions on y and two regions

of interest are apparent: that for real values of y and that for

imaginary values,

10 )
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for (a2 + B2) < 1 vy is real
vy = /T (280
for (o + B2) > 1 vy is imaginary.
(8)

Consider now a unit circle in the a-B plane of direction cosine
space as shown in Fig. 2.2. fnside this unit circle y is real and the
corresponding part of the disturbance will propagate and contribute to
the wave field in plane P. However, those components of the direction
cosine spectrum which lie outside the unit circle have imaginary values

of y and represent that part of the disturbance which experiences a

rapid exponential decay. This is the part of the disturbance which is

commonly referred to as the evanescent wave (Goodman, 1968).

Let U,(Z,5;0) be the product of the complex amplitude transmit-
tance of a diffracting screen and the complex amplitude distribution
incident upon it. Figure 2.3(a) illustrates this quantity broken down
into the part which propagates and the part which makes up the evanes-
cent wave for the case of a unit amplitude plane wave normally incident
upon a circular aperture. The direction cosine spectrum of plane waves
associated with these respective optical disturbances are shown in Fig.
2.3(b).

Note that the sharp corners on the original disturbance in

Fig. 2.,3(a) correspond to Kirchhoff's unnecessary boundary conditions.

It is the propagating part only that accurately represents the

11
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Fig. 2.2. Unit Circle in Direction Cosine Space.

The plane wave components inside this
circle will propagate, and the plane
wave components outside this circle
contribute to the evanescent wave.
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disturbance immediately behind the diffracting aperture which will con-
tribute to the disturbance downstream.

It is now clear that the complex amplitude distribution in plane
P can be determined by Fourier transforming the original disturbance
Uo(&,g;O), then multiplying the resulting direction cosine spectrum of
plane waves Ao(u,B;O) by the transfer function of free space given in
Eq. (7), and finally by applying the inverse Fourier transform integral
of Eq. (4). However, the limits of integration on Eq. (4) must be
changed such that the integration is performed only over the unit
circle instead of over the entire a-B plane.

The above analysis, in which an optical disturbance is repre-
sented as a superposition of plane waves, corresponds to the transfer
function approach in image formation and yields considerable insight
into the behavior of these plane wave components during the phenomenon
of diffraction.

The Diffracted Wave Field
as a Superposition of Spherical Waves

The convolution theorem (Bracewell, 1965) of Fourier transform
theory requires that a convolution operstion exists in the domain of

real space that is equivalent to Eq. (6).

The Point Spread Function
We thus have the alternative method of expressing the complex

amplitude distribution in the observation plane by the convolution of

14
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A § the original disturbance with a point spread function. The point
‘ spread function is obtained by taking the inverse Fourier transform of
the transfer function found in Eq. (7).
% . Starting with the well-known Weyl expansion formula (Weyl, 1919),
=3
A Lalor (1968) obtained a result which, with straightforward modification,
i' yields
bt © Lo
" . A s 127
: 121y3 127 (aR+BY) . .19
2 JJ e e dadB s - 1 98 P » (9)
where

P2 = 82 4+ 92 + 82,

The left side of Eq. (9) is the inverse Fourier transform of the trans-

fer function of free space. The appropriate point spread function is

thus given by

. 121
hegin = &1 {2 (ﬁ;-i)%e? . o)

Huygens' Principle

Recall now the assertion by Christiaan Huygens (Thompson, 1912}
in 1678 that each element of a wavefront may be regarded as the center
of a secondary disturbance which gives rise to spherical wavelets; and
moreover that the position of the wavefront at any later time is the
envelope of all such wavelets. These intuitive convictions, sometimes

b called Huygens' wavefront construction, are an excellent description of

15
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a convolution operation in which the initial disturbance is convolved
with a Huygens' wavelet. It is therefore quite appropriate to think of
the point spread function of a diffraction system as the intersection of
a Huygens' wavelet with the observation plane.

Equation (10) is therefore an exact mathematical expression for a
Huygens' wavelet which is valid right down to the initial disturbance

itself., However, for » >> 1,

i2np eiZn(ﬁ - 1/4)

h@,g38) = -1(8/F) 2 = (3/%) 5 , a1

~

r

it reduces to the familiar expression for a spherical wave with cosine

obliquity factor and a n/2 phase delay.

General Rayleig)-Sommerfeld Diffraction Formula
If we write down the convolution integral for the disturbance in
the observation plane, using the expression in Eq. (10) for A(%,§;3), we

obtain the general Rayleigh-Sommerfeld diffraction formula

¥ 1 . . ei2n2
vegs = [ e (-——.—-i) sk E—adg 2
: 2nl £
where
22 = (@-8)2%+ (§-5")2 + 82, (13)

This is an exact expression for the diffracted wave field which is valid

throughout the entire space in which the diffraction occurs--right down

16




to the aperture. No approximations have been made in this scalar

theory. Furthermore, the above equation expresses the disturpance om
the observation plane as a superpasition of spherical waves which

corresponds to the spread functior approach in image formation.

Geometrical Configurations of the Cbservation Space

In order to insure a space invariant point spread function our
equations have been restricted to mapping an optical disturbance from
an input plane to an output plane, where 2 has a parametric relation-
ship since its value determines the locatior of the output plane. How-
ever, the summation of these Huygens' wavelets is valid over any
surface. The above treatment thus gives us a far more powerful concep-
tual tool than provided by the equations themselves.

We will therefore investigate the properties of the diffracted
wave field on two particular geometrical configurations of the

observation surface.

The Diffracted Wave Field on a Plane
Equation (12) reduces to the more familiar but less general

form of the Rayleigh-Sommerfeld diffraction formula when £ >> 1,

N

t 5 12wl
Uu@,9,8 - -1 I[ Uo(ﬁ',y';O) -'g-zf—'dﬂ'dg'- (14)

-0
The following algebraic substitutions

b o= s(140), s = 2

17




allow us to rewrite Eq. (14) as

ei21r2 1
U2,9;2) 15 j[ Uo(x':g';o) W €

-0

12m(-8) gpr g, (15)

Note that we have imposed no restriction upon the size of the aperture

or the size of the observation space. The only limitation on the above

equation is that the observation plane must be many wavelengths from

the aperture.

x The above diffraction formula is a rather unwieldy integral to
solve explicitly for most problems of practical interest. The Fresnel
and Fraunhofer diffraction formulas are obtained by retaining only the

first two terms in the binomial expansion for the quantity

2 - 9(1 + [(@2+92)/82 + (8'24912)/82 - z(wwgz?')/zz])’ﬁ.

However, severe restrictions are then imposed upon the size of the
aperture and the region over which the calculations are valid in the
observation place. In order that we do not impose these rest- ictions,
all terms from che binomial expansion must be retained. This can be

accomplished by rewriting Eq. (15) as the following Fourier transform

integral
. oL 218 ¥ . i @'z + 5'y)
U(z,7:38) = — J]“’b(i"9'55:?) e 3 dz'dj', (16)
13

where the complex quantity

18
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¥, (8',0"32,9)

can be regarded as a generalized pupil function. To(ﬁ,g;O) is the cor-
plex amplitude transmittance of the diffracting aperture (or aperture
function), and all of the terms from the binomial expansion for the
quantity (2~£), except for the term which was extracted for use as the
Fourier kernel, are lumped together in the quantity ¥ along with any
phase variations in the incident wavefront.

Equation (16) clearly reduces to the conventional Fresnel dif-
fraction formula when a plane wave is incident upon the aperture and
when 8 is sufficiently large such that 2 is adequately aprcoximated by

retaining only the first two terms of the binomial expansion.

The Diffracted Wave Field on a Hemisphere

Let us now examine the diffracted wave field on a hemisphere
centered upon the diffracting aperture as illustrated in Fig. 2.4. The
position of an arbit-ary observation point will be specified by the
direction cosines a and B of ts position vector, and the radius # of

the hemisphere upon which it resides. Note that

«a = &/, B = fH/f, and vy = 8&/», (18)

where
P2 = 22 + 92 + 82, (19)

The following algebraic substitutions
= pee); e = (R-p)/p (20)

allow us to rewrite the general Rayleigh-Sommerfeld diffraction formula

19
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Fig, 2.4. Geometrical Relationship Between Incident Beam, Dif-
fracting Aperture, and Observation Hemisphere.
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expressed in Eq. (12) as
et2nﬁ
veei) = v S [[ g,e0m0

1 1 dan(Eedy ., .,
[2n?(1+e) B t] (1+g)2_'e di'dy’. (21)

We now have an exact expression for the diffracted wave field on an
observation hemisphere which is valid throughout the entire half-space
behind the plane of the diffracting aperture.

If we now require that # >> 1 and make the appropriate binomial
expansion for the quantity (2-?), we again obtain a Fourier transform
integral

®

12np .
Ue,858) = v ”%(ﬁ'.ﬁ';a.e)e"z"m' * B apg, (g9

oA

r

where the generalized pupil function is given by

Y5508 = To@5'50) v e (23)

Once again, all of the terms from the binomial expansion for the quan-
tity (2-?), except for the term which was extracted for use as the
Fourier kernel, are lumped together in the quantity K along with any

phase variations in the incident wavefront.
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Aberrations of Diffracting Systems

The quantity W in Eqs. (17) and (23) represent phase variations

in the diffracted wavefront emerging from the aperture. Therefore, ¥

can be interpreted as a conventional wavefront aberration fumction

e s

(Hopkins, 1950) which is conveniently expressed as a general power

series expansion of the pupil coordinates and the appropriate field

Sk oNtester it

parameters.
For the case of a rotationally-symmetric diffracting aperture we

can, without loss of generality, choose the observation point to lie on

I ——

the y-axis (& = 0). The wavefront aberration function can then be

written as
W = Wapp02 + Wogod? + Wiyjpa cos¢
+ ﬁh,oopl' + ﬁoqo&“* £/13lp&3 cos¢ + i;'zzzpzaz COSZ¢
+ Wagop2a? + W3)1p3 cos ¢
+ higher-order terms, (24)

where p is a nomalized field position of the observation point and a
is a normalized pupil height.

By equating coefficients of the corresponding terms in the
appropriate binomial expansions and the above wavefront aberration func-
tion, we obtain expressions for the aberration coefficients in terms of
the aperture diameter, the observation distance, and the appropriate

field parameter. These aberrations, which are inherently associated with

the diffraction proc3ss, are precisely the effects ignored when making

the usual Fresnel and Fraunhofer approximations. Furthermore, these

22
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aberrations have the same functional form as the familiar aberrations
caused by the refraction or reflection process in imperfect imaging
systems.

The expressions for these aberration coefficients are derived
in Appendix A and tabulated in Table 2.1 to enable easy comparison of
several different geometrical configurations of the incident wavefront
and the observation space.

Conside: first a plane wave illuminating the diffracting aper-
ture and a plane observation space. We see from the first column of

Table 2.1 that all aberrations are present except for lateral magnifi-

cation error (Wj;;) which is absent for all geometrical configurations
because this term of the binomial expansion for L is extracted for use
as the kernel of the Fourier transform integral. It is clear that very
large observation distances are required to reduce defocus (ﬁozo) to a
negligible value. Also, distortion (ngl) imposes severe restraints
upon the field angle over which the diffracted wave field is accurately
described by the Fourier transform of the aperture function. These
restrictions are the same as those usually imposed during the develop-
ment of the Kirchhoff theory and in most applications of the Rayleigh-
Sommerfeld diffraction theory.

The effect of illuminating the aperture with a spherical wave
converging to the observation plane is to eliminate defocus (ﬁozo) and
all orders of spherical aberration (ﬁoqo). This removes the require-

ment for an extremely large observation distance, but the Fourier

23
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transform of the aperture function is still valid only over a small
region about the optical axis in the observation plane.

Choosing the observation space to be a hemisphere centered upon
the diffracting aperture eliminates field curvature (szoj, distortion
(W311), and all orders of piston error (Wzqo and Wygg).

Hence for the case of a spherical incident wave converging to
the intersection of the optical axis and an observation hemisphere,
only coma (W;3;) and astigmatism (ﬁézz) are present. And the values of
the aberration coefficients can be calculated from the relationships
provided in the last column of Table 2.1.

Thus, for a system with an aperture diameter of 1 mm and an

observation hemisphere with a radius of 1 m, we have for A = 0.5 um and

Prax = 1

Wy3p = 1.25 x 10°%
Wppp = =2.50 x 10-1, (25)

Hence there is only A/4 of astigmatism at the edge of the field (i.e.,
90° field angle).

Similarly for an f/10 system (&/ﬁ = 0.1) with an aperture diam-
eter of 5 cm and a maximum field angle of 0.5° (Bpax = 0.00872), we

have for A = 0.5 um,

0.545

b2
—
w
—

"

-0.095. (26)

x!
N
N
N

"

Hence coma dominates at the edge of the field with a value of

approximately A/2.
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Finally, for an £f/10 system with an aperture diameter of 1 cm
and a field size equal to the size of the aperture (i.e., a pair of

£f/10 relay lenses 1 cm in diameter), we have for A = 0.5 um,

0.625

W31

W22 -0.625. (27)

We find slightly more than A/2 of coma and astigmatism at the edge of
the field.

It should be pointed out that in each of the above cases the
radius of the Airy disc in direction cosine space is approximately
equal to 0.001 Bmax' Hence the off-axis aberrations are of little more
than academic interest unless there is some structure in the aperture
with high spatial frequency content which will diffract light at large
angles from the direction of the incident bean.

However, the above analysis of the aberrations associated with
the diffraction process can be readily applied to holographic systems
or systems containing diffraction gratings.

For example, an f/6 system with a 10-line-per-mm Ronchi ruling
placed in a 40-mm diameter aperture produces the diffraction pattern
shown in Fig. 2.5. The diffracted order at three different field posi-
tions was photographed through a microscope with the following results:
at B = 0 no aberrations were apparent; at g = 0.04 coma was predomigzﬁf\
with a value of approximately 5); and at 8 = 0.10 coma and astigmatism
both have values of approximately 15A. These values were estimated by

visual inspection of the aberrated diffracted orders.
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OBSERVATION'
HEMISPHERE

r= 240mm
d= 40mm

Fig. 2.5. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed in
an £/6 Cone of Light with a 40-mm Diameter,

Magnified images of diffracted orders at various field positions

indicate that coma is predominant for small field angles with
astigmatism also becoming significant at larger field angles,
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By stopping the aperture down to a diameter of 12 mm (£f/20
system) and observing the diffracted orders at larger field angles,
astigmatism becomes the predominant aberration as shown in Fig. 2.6.
The sagittal focus lies on the observation hemisphere of radius r and
the medial and tangential surfaces have smaller radii as indicated.
The diffracted order at B = 0.020 exhibits about 61 of astigmatism.
This order was observed through focus with the microscope and the mag-
nified images are displayed.

In both of the above examples the observed aberrations are in
good agreement with those predicted from the coefficients presented in

Table 2.1.

Shift Invariance of the Diffracted Wave Field

We have shown that any departures of the actual diffracted wave
field from that predicted by the simple Fourier transform of the aper-
ture function take the form of conventional wavefront aberrations.

If we neglect these aberrations, Eq. (22) reduces to

12np . P
U(s,8:#) = ¥ Sopm ” T_(2',9';0) e P2 (2 +69") gar g (28)

But this is merely the Fourier transform of the aperture function mul-

tiplied by a spherical Huygens' wavelet.

et2rt
U(s,B58) = ¥ S FTo(8,5;0)). (29)
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Fig. 2.6. Diffraction Pattern of a 10-Line per mm Ronchi Ruling Placed
in an £/20 Cone of Light with a 12-mm Diameter.

Magnified images of a diffracted order at different focal
positions indicate that astigmatism is predominant. The
relationship of the sagittal, medial, and tangential sur-
face to the observation hemisphere is also shown,
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This relationship is valid provided that the observation space is a
hemisphere centered on the diffracting aperture and if the incident
radiation is a unit amplitude spherical wave whose center of curvature
lies on the intersection of the observation hemisphere with the z-axis.
Furthermore, if r is large compared to the size of the diffracting
aperture, the Fourier transform relationship is accurate, not merely
over a small region about the z-axis, but instead over the entire
hemisphere.

Now consider the situation where the incident radiation strikes
the diffracting aperture at an angle 6, as illustrated in Fig. 2.7.
This is equivalent to introducing a linear phase variation across the
aperture. By applying the shift theorem (Bracewell, 1965) of Fourier
transform theory to Eq. (29) we find that the complex amplitude distri-

bution on the hemisphere is a function of (8-8p),

U(a,B-Bp3?) = v e—t-giy{'l'(&,yso) exp[t2n8,4]}, (30)
where 8 is the direction cosine of the position vector of the observa-
tion point, and B, is the direction cosine of the position vector of
the undiffracted beam. Note that these direction cosines are obtained
by merely projecting the respective points on the hemisphere back on to
the plane of the aperture and normalizing to a unit radius. The com-
plex amplitude distribution at an arbitrary point on the hemisphere can

now be said to be a function of the distance of the observation point

from the undiffracted beam in direction cosine space.
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As a specific example, suppose we have incident light striking
a diffraction grating at an angle 6,. The diffracted orders will
strike the observation hemisphere in a cross section which is not a

great circle but instead a latitude slice as shown in Fig. 2.8. Thus

for large angles of incidence the various orders appear to lie in a

X straight line only if they are projected down onto the «~-8 plane in
direction cosine space. It is therefore clear that varying the angle
of incidence merely shifts the diffracted wave field in direction
cosine space without changing its functional form. This has been veri-
; fied experimentally by mounting a diffraction grating at the center of
a transparent hemisphere, placing graph paper on the plane of the dif-

fraction grating (a-B plane), and scribing appropriate latitude lines

Lgm g e .
Pl DR AN

on the hemisphere upon which the diffracted orders fall when illumi-

nated with a small laser beam.

e

Summarx

We have developed a very useful treatment of near-field scalar
diffraction theory that yields much more insight than the conventional
Rayleigh-Sommerfeld theory.

By describing the diffraction process in terms of the direction
cosines of the propagating light we have obtained the extremely power-
ful result that the diffracted wave field on an observation hemisphere
is given directly by the Fourier transform of the aperture function.
This allows us to apply the well-known techniques of linear systems

theory that have proven so useful in the area of image formation.
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Fig. 2.8, Illustration of the Position of the
Diffracted Orders in Real Space and
¢ Direction Cosine Space,
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Furthermore, we have shown that any departures of the actual
diffracted wave field from those predicted by the Fourier transform
relationship take the form of conventional aberrations whose behavior
is well understood in terms of the dimensions of the diffraction aper-
ture, the radius of the observation hemisphere, and the appropriate

field parameters.
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CHAPTER 3

SURFACE SCATTER THEORY

In the following treatment the scattering of light from optical
elements is considered to be solely a surface phenomenon. It is recog-
nized that bulk scattering mechanisms, such as photon-phonon interac-
tions (Bloembergen and Shen, 1965) and scattering from free electrons
(Vachaspati, 1964), can exist if the substrate material is not perfectly
conducting. The excitation of surface plasmons has also been suggested
by several investigators as contributing to short wavelength scattering
from polished metal surfaces (Beagiehole, 1970; Beaglehole and Hunderi,

1976; Crowell and Ritchie, 1970; Elson and Ritchie, 1971; and Daudé,

Savary, and Robin, 1972). However, the above effects are believed to
be small for most visible and infrared radiation scattered from metal

surfaces,

Surface Scatter Phenomena as a Diffraction Process

In Chapter 2 it was shown that, under the proper circumstances,
the diffracted wave field on a hemisphere is given directly by the
Fourier transform of the complex amplitude transmittance of the diffrac-
ting aperture. Usually a diffracting aperture consists of a '"hole" in
some opaque surface, This is a binary amplitude diffracting aperture.
Clearly, a continuous amplitude diffracting aperture (a piece of photo-
graphic film, for example) can also exist. A more general situation

is the complex diffracting aperture which exhibits both amplitude and

35
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phase variations. It is these phase perturbations that lead to scat-
tered radiation. Surface scatter phenomena can thus be descritezd as

a diffraction process in which the pupil function has random phase
variations in addition to any existing amplitude variations. The dif-
fraction theory of the previous chapter can therefore be applied
directly to the problem of predicting the complex amplitude distribution
on an observation hemisphere of radius r resulting from an incident

beam of light being reflected from a rough surface.

The System Pupil Function

A simple treatment of surface scatter theory can be formulated
by considering the effect of the scattering surface to be a space-
dependent modifier, or random component, of the effective pupil func-
tion of the system. The disturbance emerging from the scattering sur-

face is then given by
Up(2,9:0) = app(2,§:0) = aypp(2,§:0)P(2,5:0).  (31)

Here the pupil function of the system producing the incident
beam is given by

) X 12mW (2,;0)
pr(%,4;0) = ap(2,y0) e ’ (32)

where a; describes the amplitude variations across the exit pupil of
the system, and W describes any phase variations or aberrations in
the wavefront of the incident bean.

The random component of the pupil function due to the scatter-

ing surface similariy has an amplitude and phase component

36
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14 R(&,Q;O)

pr(2,§5;0) = VR(£,5;0) e (33)

Here R is the reflectance of the scattering surface and &R is the sur-

face height. Note that the phase variations on the reflected wavefront
are twice as large as the actual variations on the reflecting surface.
Figure 3.1 illustrates the surface heiglt variations, ﬁh, as a
function of distance along the surface, This surface profile has
associated with it an autocovariance function and a surface height

distribution function as indicated.

Autocovariance
function

4

Surface —
height Surface
distribution height
W
/;\A M //\*\é
|V VAV V4

Fig. 3.1. Illustration of Surface Height Variations and Associated
Statistical Parameters.
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Intensity Distribution of a Scattering System

The results of the previous chapter, [Eq. (29)], indicate that
the complex amplitude distribution on the observation hemisphere is

given directly by the Fourier transform of Ub(&,Q;O)

12nH

UoB;®) = y 2

1r

3“10(&,?;0)}. (34)

The total reflected flux ¢ is obtained by applying Rayleigh's

theorem from Fourier transform theory

2 -]
b - H%lvca,s;%)lzduds = af? ”lpcfc'.y'w)lzda‘c'dg'-
-0 -in (35) .

Noting that dw = dadB/y, the radiant intensity of the scattering

system can be written as

2
Iwe) = £ = Tluesn|? = o 2@

(36)
Utilizing the autocorrelation theorem of Fourier transform theory, this

is equivalent to

r
I = a’1¥ f} P(',§;00p* (&' -2,9'-§;0)d'd ). (37)
For the special case of a Lambertian surface, the autocorrela-
tion function approaches a Dirac é-function; hence, its Fourier trans-
form is constant and we obtain
IL(a,B) = yK, K = constant (38)

which is consistent with Lambert's cosine law.
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The System Spread Function
Following the standard procedure used in image evaluation, the

effective transfer function of the scattering system is defined as the

normalized autocorrelation of the pupil function

- J

[ p@50:0000 @ 200500800y

x(&ny;o) =

) ‘ (39)
J] ,p(&v’hv;o) IZd%vdgv

o

The effective spread function of the scattering system is now

defined in the usual way as the Fourier transform of the transfer

function

o0

3{” p(a‘c',9';0)p*(ﬁ'-?c..z?’-9;0)d£'d9'}

J

Aa,8) = FlHE,5;00) = -

[ 1o g o

Direct substitution from Eq. (35) and Eq. (38) results in the following

expression for the effective spread function in té;ms of the radiant

intensity of the scattering system

= _!'_ = I(a,B 4
‘8(0-3) v I(a,8) m—%—)—{ . (41)

Scattering from Optical Surfaces

Let the height variations WR of a given illuminated area on a

scattering surface be a two-dimensional sample function ﬁﬁi(é,g;O). A
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random process, Qk(&,Q;O), is made up of an ensemble of such functions

as shown in Fig. 3.2. For fixed spatial coordinates, QR(&I,QI;O) is a

random variable. And, for a specific sample function with fixed

spatial coordinates, yRi(xl,gl;O) is a single number.

W, (x,¥)

~>

|
L
' - ~
l .(XZD)’Z)
:(xlel) '

2172)

~~
x>

¥(x1,71)

Fig. 3.2. An Ensemble of Two-dimensional Sample Functions W;(Z,§)
Representing Surface Height Variations Constitutes a Random
Process W(2,§).

Two random variables, W(£),5)) and W(%,,5,) with fixed
spatial coordinates are also shown.
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The Statistical Properties of an Optical Surface

We are primarily interested in the scattering behavior of opti-
cal surfaces. The following assumptions are made concerning the sta-
tistical properties of an optical surface prepared by conventional
fabrication techniques on ordinary optical materials:

1. The reflectance R is constant over the entire surface. This
assumption is not essential but it is reasonable and furthermcre it has
been shown by Shack (1967) that phase fluctuations will dominate over
amplitude fluctuations in their combined effect on the spread function.

2. ﬁk(&,g;O) is a single-valued Gaussian random process.

3. ﬁk(&,g;O) is at least locally stationary in the statistical
sense (i.e., surface is homogeneous and isotropic).

4. The random variables ﬁk(ﬁl,yl;O) and WR(éz,gz;O), produced by
any two fixed pairs of spatial coordinates, are jointly normal.

5. ﬁk(&,g;O) is weakly ergodic (i.e., the mean and autocorrela-
tion function determined by space averages using a single sample func-

tion ﬂRi(ﬁ,g;OJ are the same as those determined by ensemble averages).
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The Transfer Function of a Scattering Surface

Substituting Eq. (31) into Eq. (39) we obtain

i2n[Wg-rg) $4n[Wrg-WRs)
JI ariarg e e as'

f] laL1'2 de'dj’

. (42)
where
a, = aL(:%'.g';O)
4y = e @'-Z, §'-§; 0)
W, o= Wo@550)
Wpp = W @'-2, 9'-§; 0)
Wy = Wp@',3";0)
Wop = Wp(@'-3, §'-§5 0). (43)

The above expression for the transfer function contains the ran-

dom variables WRI and VRZ; therefore, taking the expected value we have

L2n[Np1-Wrp) ( i4n[Wgy-Wpal
P!
” ay 147 5€ Ece dz'dg’

E{¥(z,y;0)} = - (44)
jj Ia[,lzd-'?"d?'

42



st Dot g et N
e b L
3 Ak

P RRER Y

.

T RS

G i e st

alimisa

A

P o e
" YRS

S

T M et o b > ¢ e

£

SR ¥
e s e NN S ercan b VA SNl b+ d s b e = &

T .
* O il e e U

Since the random variables involved are assumed to be stationary,
the expected value under the integrai is independent of &' and §' and

can be taken outside the integral

ﬁ izvr[f/Lz-fsz]d& %

a, ,a, o8 'ag!

i4“[f]R1’ﬁ,1?2]l - Lr'za

E{H(2,0;0)} = E<e , po + (45)
[[ azi2aa ey

We now recognize the normalized autocorrelation function in the above

equation to be the transfer function of the optical system producing the

incident beam

o

ian(igg-pal
JJ ar19; 98 de'dy

H; (2,5;0) =

JJ Ialea‘:?c'dg'

. (46)

The average quantity in Eq. (45) is therefore the equivalent transfer

function of the scattering surface

. i4n{Wp1-WRal
Hp(2,9:0) = Eq . (47)

But this is merely the joint characteristic function (Papoulis,

1965, p. 225) of the two random variables QRz and ﬁRZ' Since &RI and

~

W

gy 8TE jointly normal random variables, it can be shown
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that (see Papoulis, 1965, p. 226)

E{e’b41\'[WRl’WR2]} . ei4"(n1_n2)e_8"2(012_2012+022) (48)
where
C12 = E{(Wpz-n1) (WR2-n2)} (49)

is the covariance function of the random variables VRJ and sz. But Rﬁl

and ﬁﬁz are identical functions merely displaced from one another; hence
Op = 02 = O n = n3 (50)

and

2 = Cp@§) = autocovariance of ﬁh. (51)

The equivalent transfer function of the scattering surface is thus given

by

0y (2.)
’(4"°W)2 1- o
W

(2,900 = e (52)

where ow? is the variance of the surface height distribution function
and cw(&.g) is the two-dimensional autocovariance function of the
surface.

Considerable insight into the scattering process can now be
obtained by considering the nature of this transfer function. The auto-

covariance function approaches the value 0@2 as the displacement
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~§; approaches zero. The equivalent transfer function thus approaches unity
i} as expected. As the displacement approaches infinity the autocovariance

function approaches zero and the equivalent transfer-function

g t approaches a plateau of height exp[-(2mof)?].
;¥ ‘ The equivalent transfer function of the scattering surface can
; thus be regarded as the sum of a constant component and a bell-shaped
% 4 component as shown in Fig. 3.3(a). Equation (52) can therefore be
g rewritten as
; H,(2,9:0) = A+ BQRH;0), (53)
‘
P where
;
2 - o (54)
B 1. e TR (55)
: | (4no)? S%(Tgﬂ
Q&,5;0) = = S . (56)
- (dwopy)?

g e -1

The Spread Function of a Scattering Surface

The significance of this interpretation of the equivalent trans-
fer function of the scattering surface is dramatically shown by the

inferred properties of the corresponding spread function. Since the
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transfer ‘function is the sum of two separate components, the equivalent
spread function of the scattering surface is the sum of the inverse

Fourier transforms of the two component functions,

B(a,8;7)

5"1{7%(&,.1?;0)} = A8(a,B;) + 5(a,8;F)

(57)
where

5(a,B;7)

5o, g0} -

The constant component transforms into a delta function, and the bell-
shaped component transforms into a bell-shaped scattering function as
shown in Fig. 3.3(b). Hence the scattering surface reflects an incident
beam of light as a specularly-reflected beam of diminished intensity
surrounded by a halo of scattered light. Furthermore, the relative
power distribution between the specular component and the scattered
component of the effective spread function are given by the quantities
A and B respectively.

Note that as more and more light is scattered, energy is
transferred from the specular component of the spread function into
ine scattered component of the spread function. For a perfectly
Lambertian reflector the specular component disappears completely

from the spread function.

A Shift-invariant Scattering Function
In general, the scattered light distribution on an observa-
tion hemisphere will change with the angle of the incident light just

as the point spread function of an optical imaging system will, in
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general, vary with the field position of the point source. However,
the analysis of imaging systems is greatly simplified by assuming an
isoplanatic system in which the point spread function does not change
with field position (and this is a reasonable assumption for many
practical imaging systems). Similarly, the analysis of light scatter-
ing systems will be greatly simplified if they can be shown to be
shift-invariant (i.e., if the shape of the scattering function does
not change with the angle of incidence).

From the discussion in the previous section it is clear that
the scattered light distribution on an observation hemisphere will
appear to consist of the sum of two components, a core which is the
delta function convolved with the spread function of the optical
system producing the incident beam, and a scattering function which
is the bell-shaped halo convolved with the spread function of the
optical system.

In Fig. 3.4 we have merely replaced the diffracting aperture
of Fig. 2.7, page 31, with a scattering surface and the gecmetry of
the measurements has been folded about the reflecting plane. Hence,
we have the incident beam striking the scattered surface at some angle
of incidence, a specularly-reflected beam striking the observation
hemisphere, and the scattered light distribution being sampled at an
,arbitrary point with direction cosine coordinates o and 8. The scat-
tered light distribution on the hemisphere will, in general, change
shape drastically with angle of incidence--becoming quite skewed and

asymmetrical at large angles of incidence. However, our theory
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indicates that the data collected on the hemisphere should be plotted
as a function of the direction cosines of the position vector of the

observation point. For certain surfaces with well-behaved statistics,

this new scattering function will not change shape but will merely be
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shifted in direction cosine space with changes in angle of incidence.

5

b heoias S

The four-dimensional Bidirectional Reflectance Distribution Function

(BRDF), which is the basic quantity that completely characterizes the

LR

scattering properties of a surface (see Appendix B), will therefore

2 diiai ety

degenerate into a single two-dimensional spread function. This is a
rather significant development which has profound implications regard-

ing the quantity of data required to completely characterize a scatter-

?f ing surface. However, it remains to be experimentally verified that

scattering surfaces of practical interest obey these predictions.

The Inverse Scattering Problem

The problem of determining surface characteristics from scat-
tered light measurements is frequently referred to as the inverse
scattering problem. A general treatment of electromagnetic inverse
scattering has been discussed by Bojarski (1971). Several attempts
have been made (Daniels, 1961; Fung and Moore, 1964; and Barrick,
1965) to determine properties of the lunar surface by applying
inverse scattering techniques to radar returns from the moon. Bennett
and Bennett (1967) were able to obtain the rms roughness and autocovar-
iance length of the surface strucvure of mirrors by assuming a Gaussian
shape for both the surface height distribution function and the surface

autocovaridance function. More recently Scheele (1973) met with little
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success in attempting to ascertain under what conditions the exact
autocovariance function can be obtained from scattered lignt data.

The treatment presented in this chapter describes surface
scatter phenomena as a linear, shift-invariant process which is
completely characterized by the effective transfer function of the
scattering surface. Furthermore, for a large class of well-behaved
surfaces this transfer function is described only in terms cf the rms
surface roughness and the surface autocovariance function and hence
provides an elegant solution to the inverse scattering problem.

The surface autocovariance function is thus obtained from

scattered light data by rewriting Eq. (52) as

2
Cyley) = (-};) m(ye;?(%’ A» + o2 (58)
where
x(Z, L) = J{J(a,e)} (59)
R(A ).) \x -
g=y/.

The rms surface roughness is given by

s I
oy = um W 15 (60)

where B (the total integrated scatter expressed as a fraction of the
total reflected light) is obtained by applying numerical integration
techniques upon the measured data describing the scuttered light dis-

tribution. Note that although we are limited by a scalar theory, we
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have made no explicit approximations regarding the size of the surface
variations. If we make a smooth surface approximation (cW<<A), then
the total integrated scatter is small (B<<1l) and we obtain the usual

expression for the rms surface roughness’

o = T‘; /B . (61)

Wavelength Dependence of the Scattering Function

A successful theoretical model of surface scatter phenomena
must provide a method of determining the wavelength dependence of the '
scattered light characteristics. This would allow one to infer the
scattering behavior of a surface for any desired wavelength from a
limited amount of data obtained at a given wavelength. Since the scat-
tering mechanism is a diffraction process, it is clear that light of a
particular wavelength scattered in a given direction corresponds to
surface structure of a given spatial frequency. This spatial frequency
component of the surface structure will scatter light of some other
wavelength into a different direction. An analytical expression de-
scribing the wavelength dependence of the scattering function must
therefore involve a change in the scatter angle with wavelength as
well as the expected change in scattered intensity. Thus, if we
wish to determine how the relative intensity at a fixed scatter angle
varies with wavelength, the surface characteristics corresponding to

the appropriate spatial frequency components of the surface structure

must be known for each wavelength of interest.
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The above discussion perhaps explains the failure of various
experimental investigators to agree in their attempts to establish the
wavelength scaling behavior from empirical observations of scattered
light data. Shack and DeBell (1974) made scattered light measurements
on mirror surfaces at two visible wavelengths. Their data indicated
a 1/22 wavelength scaling law. Leinert and Kliipelberg (1974) also made
mirror scatter measurements at two wavelengths in the visible. They
found a 1/A wavelength dependence. Perkin-Elmer (1975) mirror scatter
measurements were made at a visible wavelength and at A=10um. This

data showed a 1/)\i

wavelength scaling behavior.

The transfer function characterization of scattered surfaces
developed in the previous section offers a simple means of determining
this wavelength dependence. Once the surface characteristics are known
[whether from direct measurement or calculated from scattered light data
by means of Eq. (58) and Eq. (60)], the same theory provides an equally
simple method of predicting the scattering function at any desired wave-
length,

Since this technique involves numerical computations on sampled
data, an analytical expression for the wavelength scaling law is not
required. However, in order to gain more insight into the nature of
surface scatter phenomena, we will proceed to derive the wavelength
scaling law for the special case of a normally incideant beam upon a

smooth surface (op<<A). Under this condition the surface transfer func-

tion expressed in terms of real pupil coordinates x and y is given by
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Hp(z,y) = A + BQ(z.y) (62)

2

E where

| ar o, \?

N A = 1- ;Y (63)

3

7 4n o, \?

i . W

1 s (5 ) ' 0

|

P | and

‘ : Cw(x’y)

- Qz,y) = o7 (65)

L i From Eq. (57), we see that the scattering function for a particular

% i wavelength is given by

|

.. 2

SG,80 = (i) sr-l{c,,(m,xg)}. (66)
Applying the similarity theorem of Fourier transform theory we obtein

3 . _ {47V 1 a B

1 s = () he ) @)
where

€, (a,8) = F-! cw(a"c,.f;) . (68)

If we now scale the wavelength by a factor a, we obtain

S8 = () s &) - wsG. i) 6

Therefore, the appropriate wavelength scaling law for smooth surfaces

is given by
. 1 o2 B,
S(a,8;2)) = = s(a- V2 ,x). (70)
Mote that, in addition to the 1/a“ change in magnitude, the width of the

scattering function in direction cosine space is scaled by the factora.
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CHAPTER 4

SURFACE SCATTER MEASUREMENTS

AEBaratus

An instrument has been designed and built at the Optical
Sciences Center for making scattered 1ight measurements on a hemisphere
as described in the previous chapter. A schematic diagram of this
apparatus is shown in Fig. 4.1. The incident light passes through a
chopper so that synchronous detection with a PAR lock-in amplifier can
be made. The mechanical apparatus shown in Fig. 4.2 is located in a
small photometric darkroom in which the experiment is conducted. A
movable arm with folding mirrors can be positioned to direct the inci-
dent beam onto the sample at any desired angle. A lens positioned on
this arm focuses the incident radiation onto the hemisphere mapped out
by the detector; hence, the geometrical configuration is consistent
with that illustrated in Fig. 3.4 of the previous chapter. Two sepa-
rate driving mechanisms allow us to measure the scattered light distri-

bution over the entire hemisphere bounded by the plane of the sample.

The Light Source
The light source employed is a Spectra-Physics Model 165 Argon
Ion Laser. The laser is operated with a light-regulated, single-

frequency output which assures intensity regulation to within
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Fig. 4.1. Schematic Diagram of Scatter Measurement Apparatus.
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Fig. 4.2.

Apparatus for Measuring Scattered Light Distribution from
Optical Surfaces.

(1) Precision rotary table, (2) worm gear drive for arm
supporting detector, (3) photomultiplier tube and fiber-
optic probe, (4) sample holder, (5) movable arm with fold-
ing mirrors and lens for directing and focusing incident
beam (6) P.A.R. lock-in amplifier, (7) high voltage power
supply for PMT.
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one percent. The measurements were made with approximately 20 mw of
power in the incident beam at wavelengths of 0.5145 um and 0.4579 um.
An He-Ne laser was also available for making measurements at a wave-

length of 0.6328 um.

The Detector Unit
The detector is a Phillips one-inch, end-on photomultiplier

tube (PMT) having an S-20 photocathode. Light reaches the photomulti-

plier by way of a rigid fiber-optic probe. Such a probe offers several

distinct advantages in light sampling. In addition to allowing
increased angular resolution throughout the sampling space, and
enabling us to sample within one degree of the incident or specu-
larly reflected beams, it provides the ability to control the field
of view of the detector for the purpose of stray light rejection.

The original configuration consisted of a rigid fiber-optic
bundle bent such that one end was pointed toward the illuminated
spot on the sample. This end of the bundle thus acted as the col-
lecting aperture for the detection system. The other end of the
fiber-optic bundle protruded into the photomultiplier tube housing
followed by a series of baffles to limit the field of view of the
detector as shown in Fig. 4.3(a). This resulted in a detector
response which had a Gaussian dependence upon field angle.

However, by introducing a small collecting lens and a field
stop in front of the fiber-optic bundle as shown in Fig. 4.3(b), the
baffles can be eliminated and a well-defined field of view of any

desired size can be obtained by properly choosing the size of the
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Fig. 4.3. I1lustration of Detector Probe Unit.

(a) Previous Configuration.
(b) New Configuration.
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field stop. This is more clearly illustrated in Fig. 4.4. A coated
doublet with a 10-mm focal length was edged down and mounted in a
black anodized brass tube 3-mm in diameter. A field stop allowing

a 5-degree field of view was fabricated and inserted into the tube

at the rear focal plane of the lens, This assembly was then posi-
tioned onto the end of the fiber-optic bundle. The detector response
from a small (point source) light source was then recorded as a
function of ficid angle for both detector probe configurations.

The results are displayed for comparison in Fig. 4.5. Both the flat
response and the sharp cutoff obtained with the modified unit are
highly desirable features. The flat response promises to eliminate
signal variations due to slight misalignment or wobble ir the mechani-
cal instrument while scanning over the hemisphere. The ability

to keep the field of view small with a very sharp cutoff is essential
for stray light rejection.

The scattered light flux from a polished surface varies by
several orders of magnitude over the angular range to be measured.
Hence the linearity of the PMT was measured using a calibrated neu-
tral density wedge and several known neutral density filters to vary
the incident flux. The resulting linearity curve is shown in Fig.
4.6 and indicates a deviation of less than 1% over a range of five

orders of magnitude of the incident flux,
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(b) Detector configuration shown in Fig. 4.3(b).
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The Scanning Mechanism

The mechanical apparatus for measuring the angular distribu-
tion of light scattered from optical surfaces was shown in Fig. 4.2.
The detector probe unit is mounted on a rigid arm that can be rotated
in either of two orthogonal directions. Rotation about a vertical
axis is accomplished by means of a massive precision rotary table.
The rigid arm is attached to the rotary table by means of a worm gear
arrangement that allows rotation about the horizontal axis. These
two separate driving mechanisms allow us to measure the scattered

light distribution over the entire hemisphere bounded by the plane of

the sample. However, in order to limit the quantity of data to be
collected, the scattered radiation field is sampled in two principal

directions. These include the entire plane of incidence and a plane

perpendicular to both the plane of incidence and the plane of the

ﬂ sample which also passes through the intersection of the specular beam
with the observation hemisphere (see Fig. 4.7). This particular sam-
pling procedure was chosen because each sampling direction then involves
one fixed coordinate in direction cosine space. Furthermore, the

apparatus was designed such that each of the two independent drive

mechanisms corresponds directly to a given coordinate in direction

I ey

cosine spacc. Hence for a given observation point determined by the

—

g angles 6 and ¢ displayed on the apparatus, the correspoading coordinates
i in direction cosine space are given by

|

i a = cosb sin¢

{

| B = sino. (71)
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Fig. 4.7. Geometrical Configuration of Two Principal
Planes in which the Scattered Light Field
was Sampled.
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The Incident Beam

A large movable arm with appropriate folding mirrors is used
to direct the incident beam onto the sample at any desired angle of
incidence. The original configuration included a single lens posi-
tioned on this arm to focus the incident radiation onto the hemisphere
mapped out by the detector as shown in Fig. 4.8. This configuration
allowed scattered light from the folding mirror M3 to reach the observa-
tion hemisphere after being reflected from the test sample. The scat-
tered light level from M3 often exceeded that from the test sample,
thus rendering the scattered light data at small observation angles
completely useless (Shack and DeBell, 1974).

An improved configuration is shown in Fig. 4.9. Immediately
following the last folding mirror the beam is focused onto a pinhole
which acts as a spatial filter. This spatial filter assembly elimi-
nates from the beam incident upon the semple any light scattered from
the folding mirrors as well as any diffraction effects from the chopper
blade. Lens L2 then forms an image of the pinhole upon the hemisphere
mapped out by the collecting aperture cf the scanning fiber-optic
probe. The dramatic improvement obtained with this configuration is
illustrated by -omparing Fig. 4.10(a) with Fig. 4.10(b). These photo-
graphs were obtained by placing a piece of photographic film in the
observation space at position B in Fig. 4.9 along with a small obstruc-
tion to block the specular beam. The six bright spots in Fig. 4.10(b)
were the weld marks on the back side of the pinhole which were illumi-
nated by the light reflected from L2 then imaged by L2 onto the observa-

tion space.
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The acquisition of a pinhole in a black substrate with no visi-

™
R

ble weld joints resulted in the photograph displayed in Fig. 4.10(c).

3 £ 2 Based upon measurements made with the instrument with no sample in
piace, the stray light in the observation space has thus been reduced
by almost two orders of magnitude.

S The aberrations associated with the scattered light distribu-

tion on the observation hemisphere were considered in determining the

e

T R

geometrical parameters of the incident beam and the detector scanning

ani

s

i mechanism. The aberration coefficients presented in the last column of

L et e e - - P

Table 2.1 yield the following values for coma and astigmatism at the

e

edge of the field (6 = 90°) when a spot 4 mm in diameter is illuminated

b . on the sample and the observation distance is 250 mm,

0.128

16. (72)

- W131

E: Wa22
Although a substantial amount of astigmatism exists at the edge of the
field, our tolerance is quite loose as we have a 3 mm diameter collec-

ting aperture on the fiber-optic probe.

Experimental Procedures

The goal cf the research reported here wa: to examine the
PN scattering properties of samples whose surface characteristics span

those typically produced with optical fabrication techniques.




Sample Preparation

’ Surface preparation techniques used to produce a set of samples
are outlined in Table 4.1. All samples were finished to be nominally
flat.

The prepared samples were cleaned prior to coating with alumi-
nun. Cleaning consisted of careful washing with Liquinox, a mild
detergent, under very warm, filtered tap water. Samples were then
mounted in a sample holder while held in distilled water. Once in a
holder, samples were moved to an ultrasonic cleaner filled with dis-
tilled water for rinsing. Once rinsed the samples were set to dry in a
dust-free atmosphere. Dry samples were removed from the sample holders
and placed in individual boxes ard supported by the edge of their back-
side. Mott (1971) used a similar cleaning technique, which he
describes more completely.

Cleaned dry samples were then placed in a high vacuum chamber
and coated to near opacity with pure aluminum. The coating technique
varied from standard procedures only in that excessive care was taken
to allow the chamber to reach a pressure below 2 x 1076 torr prior to
coating. The samples were allowed to cool to room temperature prior to
removal from the chamber. Each coating run contained ten different
samples. Once coated, samples were returned to their individual storaée
boxes. After all samples were coated, the best samples of each type
were selected for measurement. This selection was made on the basis of
individual inspection of each sample while held under a microscope
illuminator in an otherwise dark room. Samples that had coating non-

uniformities, sleeks or pinholes were rejected as were those with
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waterspots, large scratches, or otherwise questionable appearance.

Prior to each set of scatter measurements, samples were again individu-
ally inspected for flaws. Dust was removed using a commercially avail-
able pressurized air can. After each sample was measured for scatter,

it was returned to its individual box.

System Alignment

Before any meaningful scatter measurements could be made it was
necessary to systematically align the entire system.

The incident laser beam was first adjusted to lie in a horizon-
tal plane. Then the mechanical apparatus was positioned such that the
axis of rotation of the movable arm supporting the folding mirrors (see
Fig. 4.9) was colinear with the incident beam. This was accomplished
by means of four massive leveling screws at the base of the stand sup-
porting the entire apparatus.

With mirror Ml removed the laser beam passed through the small
hele in the center of the bearings upon which the movable arm rotates.
This assured that the incident beam was indeed colinear with the axis
of rotation and furthermore allowed the sample holder, which was
mounted on a shaft passing through the axis of the precision rotary
table, to be accurately positioned with the center of the scattering
surface lying at the intersection of these two perpendicular axes. The
precision rotary table was then positioned such that the beam was
accurately centered on the detector at position A, then rotated pre-

cisely 90°, leaving the detector at position B.
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Mirror Ml was then put into place and adjusted until the laser
beam was centered upon mirror M2. Similarly, M2 was adjusted until the
beam was centered upon M3.

With the lenses L1 and L2 and the pinhole } removed from the
system, mirror M3 and mirror M2 were systematically adjusted until the
beam was centered upon both the sample holder and the detector at
position B.

The incident beam was thus accurately positioned perpendicular
to the axis of rotation of the movable arm. A polished sample was then
placed in the holder and adjusted until the specularly-reflected beam
returned precisely along the incident beam. The sample holder was thus
accurately positioned perpendicular to the incident beam and locked
into this position.

Lenses L1 and L2 were then placed in the beam and properly cen-
tered. And finally, the pinhole P was accurately positioned at the
back focal position of lens L1.

With the system properly aligned, the movable arm could be
rotated to direct the incident beam at any desired angle without
requiring vther adjustments to keep the heam centered upon the sample.

An additional requirement was that the PMT with its associaced
fiber-optic probe be positioned and aligned such that the field of view
of the PMT remain accurately centered on the illuminated portion of the
sample throughout the entire range of its scanning motion. Prcvisions
were therefore made to allow three degrees of freedom (one translation

and two rotation) in adjusting the position and orientation of the PMT
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housing. Removing the PMT from its housing and illuminating the fiber-
optic probe from the back side greatly facilitated this alignment pro-
cedure as it allowed one to directly observe the field of view on the

sample holder while making the necessary adjustments.

Measurement Technique

The sample to be measured was placed in the holder and the mov-
able arm positioned to achieve the desired angle of incidence. A cali-
brated attenuator was then placed in the incident beam and the detector
centered on the specularly-reflected beam. The collecting aperture of
the fiber-optic probe was large enough to collect the entire specular
beam; hence, the output signal, Vg, of the PMT in this position was
proporticnal to the total flux in the specular beam.

The detector was then moved a known angular distance (approxi-
mately one degree) from the specular beam and the attenuator removed.
A profile of the scattered light distribution was then measured by
scanning the observacion hemisphere with the fiber-optic probe.
Approximately 30 separate readings were taken at different angular
positiéns between the specular beam and the plane of the sample. These
readings constitute the raw data.

The sample was then removed and the incident beam allowed to
pass unobstructed through the sample holder and into a black absorbing
Rayleigh horn. Background measurements were then made along the s: e

profile as above and subtracted from the raw data. These background

measurements were found to be completely negligible in most instances.

75

<o\t




RO VP P Y

The data now represents the spread function of the scattering
system, which is made up of the spread function of the scattering
surface convolved with the spread function of the optical system pro-
ducing the incident beam. These are shown in Fig. 4.11,

The spread function of the incident beam is then measured by
again placing the calibrated attenuator in the incident beam and cen-
tering the detector on the direct beam passing through the empty sample
holder. Since the collecting aperture of the fiber-optic probe is
large enough to collect the entire incident beam, the output signal,

Vb, of the PMT in this position is proportional to the total fl;x in
the incident beam. The detector is then moved a known angular dis-
tance (approximately one degree) from the direct beam and the atten-
uator removed, A profile of tne incident beam is then measured. These
readings rapidly diminish to zero within five degrees of the peak value.

Since the spread function of the incident beam [Fig. 4.11(a)] is
narrow compared to the scattering function of the surface [Fig. 4.11(b)],
the scattered portion of the surface spread function is virtually un-
changed by the convolution operation while the delta function component
merely replicates the beam spread function. The desired scattering
function can thus be obtained by subtracting the beam spread function

readings from the raw data.

Presentation of the Data

It is customary to present scattered light data from diffusely
reflecting surfaces in a polar format. Three experimental curves and

one ideal reference curve are illustrated in Fig. 4.12. Note that we
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have plotted the quantity VZKEI along the radial coordinates where
Aw is the solid angle subtended by the fiber-optic probe. Since V is
proportional to the power collected by the fiber-optic probe and Vo

is proportional to the total power in the incident beam, this quantity
is the relative intensity cf the scattered light distribution (i.e.,

scattered intensity normalized by the incident power). For smooth

E mirror surfaces this same quantity is usually plotted in a cartesian
format as a function of the scattering angle as shown in Fig. 4.13.

Dividing this data by the cosine of the scattering angle

e
-~

{(y = cos8), we obtain

L A O
CARE e

W

4 P/ (Ayhw) Ly
= = (73)
VOAwy PO/A E;

where A is the illuminated area on the sample. This quantity is

equivalent to the reflected radiance in the sampled direction divided

by the incident irradiance, which is precisely the manner in which the
BRDF is defined. The resulting scattering curve, exhibited in Fig.
4.14, is therefore a one-dimensional profile of the four-dimensional

BRDF. Also, in accordance with our theory we are plotting this function

versus the quantity 8-80, which is the distance of the observation

point from (he specular beam in direction cosine space.

It can be readily shown that the BRDF is merely an infinite
family of two-dimensional spread functions which are scaled by the

toial reflectance of the surface,
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619

Since we measure only the scattered component of the spread function
(See Eq. 57) and are primarily concerned with the scattered light
behavior rather than the total reflectance, the scattering function

can be written as

V(a,B)

5(.8) = BV ey

(75)

All measurements are thus normalized by the reflectance of the surface
so it does not appear to have better scattering characteristics due to
its lower reflectance.

The MgO surface, which is a fairly good diffuse reflectance
standard, yields a straight horizontal line as a Lambertian reflector

should. Since the radiance of a Lambertian source is given by

= ¥
L = - (76)

where M is the total emittance into a hemisphere, the value of the
Mg0O scattering function can be shown to be % . A Lambertian surface
of known reflectance, Ry, thus makes a convenient reference sample
and the scattering function of a test sample of reflectance, R, is

given by

V(a,B) R

S(a,B) =
R VL ny

(77)

where V; is tne PMT voltage signal from the Lambertian reference sur-

face at a=B=0. A freshly coated Mg0 sample with a total




hemispherical reflectance Ry = 0.98 was routinely used as a reference
sample for the remainder of the measurements. Unless stated otherwise,
the scattering function of Eq. (77) will be used for presenting the
data in this dissertation. Furthermore, in accordance with the theory
presented in Chapter 2, this scattering function will be plotted as a
function of distance from the specular beam in direction cosine space
(B-B,) as shown in Fig. 4.15. Note that by plotting both ordinate and
abscissa on a log scale the scattering function for the polished sample

takes the form of a straight line.
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CHAPTER 5
DATA AND RESULTS

The angular distribution of scattered light measured from a
variety of surfaces, angles of incidence, and wavelengths are reported
in this chapter. The results obtained are then compared with theoreti-

cal predictions.

Surface Roughness Effects

The scattered light profile for a normally incident beam on a
variety of samples with a wide range of rms surface roughness values
are exhibited in Fig. 5.1. Note that the polished samples are charac-
terized by a straight line curve with a slope between -3/2 and -2. The
ground glass samples yield curves which are flat for a substantial
angular range before falling off rapidly at the larger angles. We
were unable to produce samples that satisfactorily bridged the obvious
gap in the data between the ground and polished samples. A separate
study of the grinding and polishing process on fused silica (Shevlin,
1974) utilizing elec.ron microscopic examination of the surface also
indicates a very rapid change in the surface character between the fine

grind and the polishing operation. This is dramatically illustrated in

Fig. §5.2.
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It is also instructive to compare the scattering curves
resulting from special materials or unusual fabrication techniques with
those of more conventional optical surfaces. For example, the results
of scattering measurements on a polished beryllium sample and an
jionically-polished fused quartz sample are shown in Fig. 5.3 along with

some curves from conventional optical surfaces.

Incident Angle Effects

Rather extensive scatter measurements have been made on two
representative surfaces. One is a ground glass surface (Sample #172)
which is a very diffuse reflector. The other is an optically-polished
surface (Sample #200) which is a nice specular reflector. Both samples
were coated with aluminum prior to making the measurements. Four
separate scattering profiles from the specular beam to the plane of the
sample (see Fig. 4.7) were measured at several angles of incidence.

The backscattering profile of the scattered light distribution
for these two samples is shown in Fig. 5.4 for several different angles
of incidence. For the polished sample, the various curves coincide
almost perfectly for angles of incidence between zero and 60°. Hence,
it is apparent that the scattering function does not appreciably change
with the angle of incidence. The corresponding curves for the rough
sample coincide for a substantial range of angles then begin to depart
somewhat at the large angles.

The four separate profiles of the scattered light distribution

fro . the same two samples with the incident beam at 45° are shown in
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Fig. 5.5. Again the curves for the polished sample coincide almost
perfectly, suggesting a rotationally-symmetric distribution in direc-
tion cosine space. Some asymmetry is noted in the scattered light
distribution from the rough sample.

The data on Figs. 5.4 and 5.5 confirm that for a certain class
of surfaces (in which optically-polished glass is definitely a member,
and ground glass can perhaps be included to a lesser extent), the scat-

tering properties are indeed shift invariant as predicted by the theory

presented in Chapter 3, and can be completely characterized by a single

set of measurements at a fixed angle of incidence!

Figure 5.6 dramatically illustrates the importance of the
coordinate system within which the scattering process is discussed.
The curves in Fig. 5.6(a) correspond to the scattered light distribution
illustrated in Fig. 3.4 and confirms the well-known fact that a curve
representing the scattered intensity as a function of observation angle
will change shape drastically with angle of incidence-~-becoming quite
skewed and asymmetrical at large angles of incidence. However, these
same data, when plotted in accordance with our theory, describes a new
scattering function which does not change shape but will merely be
shifted in direction cosine space with changes in angle of incidence as
shown in Fig. 5.6(b). This is a rather significant development which
greatly reduces the quantity of data required to completely character-

ize the scattering properties of a surface.
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The Inverse Scattering Problem

The problem of determining surface characteristics from scat-
tered light measurements plays an important role in many areas of
technical interest. Recall that the surface autocovariance function
and the rms surface roughness are two relevant surface characteristics
which are related to the scattering properties of the surface by the

transfer function described in Chapter 3.

Predictions of Surface Characteristics

A computer program has been written (see Appendix C) for cal-
culating the effective transfer function and the surface autocovariance
function from scattered light data. The measured data are assumed to
be a radial profile, S(p), of a rotationally-symmetric scattering func-
tion. An intermediate quantity, BQ(8), is first determined by calcula-
ting the two-dimensional Fourier-Bessel Transform of this scattering
function. The surface transfer function is then calculated from
Eq. (53), where 4 = 1-B, And finally, the surface autocovariance func-
tion is computed from Eq. (58). Representative curves fcr a diffusely
reflecting ground glass surface and a specularly reflecting polished
glass surface are shown in Fig. 5.7 and Fig. 5.8. Note that the total
integrated scatter, B, and the rms surface roughness, oy, are also pro-
vided from these curves. Figures 5.9 through 5.13 illustrate the pre-
dicted surface characteristics from other samples which we wish to

compare with independent measurements.

94




,m"::?.-31.\:&?!1‘»@"’*’«»“ IR SATIC ZPW % tadatoe o QY , TN s ek, L A T e e e e TR TN S, Ao c e s ARSI PR

L g
1.0 Scattering Function--S{p) Lo”l_-'ggy_@gr-nessel Transform--BQ(8)
; -~ B = 0.874
- 0'8 008L
;&
0.6 0.6}
: 0.4 0.4
+4
0.2 0.2
. 0.0 PR N E—— N
L 0.2 0.4 0.6 0.8 1.0
Surf _—
0 urface Transfer F\{gc.:tion J(’R(s_)o.oos
0.8} 0.0044
--%2 = 0.00348 um?
0.6
0.4
0.2
0.0
0.5 1.0 1.5 2.0 2.5
Fig. 5.7. Computer Output from Inverse Scattering Program
for Sample #172 (A = 0.5145 um).
i
3




R S T TR T R SN s o

TP AT ATTHS I 33 EIIRGIING Y ST TG i e NI T e e st e

0.25p Scattering Function--S(p) 0.0025¢ Fourier-Bessel Transform--5Q(8)
----- B = 0,00212
0.20P 0.0020 §
0.15H 0.0015%
0.10) 0.0010}
0.05% 0.0005 §
0.0 7~ 4 A A App 0.0 2 A 2 A " N :g
0 0.2 0.4 0.6 0.8 1.8 2 4 6 8 10 12
1.0 turface Transfer Function-- p($) 0 SPSurface Autocovariance function--Cy(s)
. ‘ .
0.8] 0.4
----?',2 = 0.357 x 1073
0.6}p
A = 0.998
0.4}
0.2}
0.0 2 e 2y 2 o 2 2
> » S
0 2 6 10 12 L3 6
Fig. 5.8. Computer Cutput from Inverse Scattering Program

for Sample #1284 (A = 0.5145).

96

P T o o o7

P



. =
=
F 3 s
I
4 o n
— O
- o
o, 0
qd N g 8
—t < QO
(7 2
=
oo v ~ 0
< Ll (2]
v 2
4 © =
4 O
-1h
priiey
a0 J=INE]
=3
[ S =]
q4 )
O
[ 5]
~ 5
o~ 4 ~ E © &
P=4 2 .=~ o«
4w 8w
[¥e] - t~
L 28 5
o & 3
- 1w 9 %
x 3 _.w
<32
& 1< © »w»
. $32
e 4 o
F ¢ o o
" =3 B
W A <
-
~ ~
K Cw g
1 [+,
H 4~ wn
[}
! 20
[ — a a s 2 H
w - 7Y ~ v o
ﬁNES wlcﬁ Xu UoIOoUNg |SdJUBTIIBAOCIOINY 3DEFING
fa‘- - - _

- ] -

g oD b et 5 A A SRy B
Bt N A s M S R S B A B o




Ead - o e RANEREPEN s & bR AT V&?‘?‘W

i

it

T

fam)
o~
g8
=2
[Ve]
]
o
)
b3
L
K [~} -
. 2 ceog2 = 1.23 x 1073 um

ey
3]
=]
2
15
o
3]
[~

o

i

2 i " 0 A 'y 2 Iy 2 ____’ X
(um)

% Fig. 5.10. Surface Autocovariance Function ior Sample
q #186 Predicted from Scattered Lignt

ES Measurements at A = 0.5145 um.

AP S S

98




surface Autocovariance Function (x 106 ym2)

2.0p

1.6p

1.2 ".----o; £1.16 x 10-6 um?

0.8p
0.4}
0 . rw— g WG
1 2 3 4 5
(um)

Fig. 5.11. Surface Autocovariance Function for Sample
#163 Predicted from Scattered Light
Measurements at A = 0.5145 um.

99

\< B o, ok B ki b b €E P RS AY ¢ S F ten b e

e




Surface Autocovariance Function (x 10~% um?)

2,5

2.0

1.5

1.0

0.5

0.4 0.81.21.6 2.02.4 2.8 3.2 3.6 4.0

(um)

Surface Autocovariance Function for

\----0,2 = 2.44 x 10°¢ un?
o

3

i

Fig. 5.12.

Sample INWC Predicted from Scattered
Light Measurements at A = 0.5145 um.

100

o .



2.0,

\----cw2 = 1,79 10-6 ym?
o~
N! 1.6 3
-8
w
1
i (=]
; -
d X
i ~
: [
'i .2 1'2 b
X8 yol
| :
' [
B [
| :
5 «
{ i
1 {8 5 0.8p
fs 3
; J
B ©
5
i <
[}
3}
‘E 004 o
o
w
0 r 2 ry

0.4 0.81.21.62.02.4 2.8 3.2 3.6 4.0
(um)

Fig. 5.13. Surface Autocovariance Function for
Sample 2NWC Predicted by Scattered
Light Measurements at A = 0.5145 um.

101




T

ST

ST

Rikanaiilita s ” * e B . S o, o a

Surface Structure Measurements

Three traditional techniques for obtaining surface structure
information involve profilometry, electro-microscopy, and FECO inter-
ferometry. Most profi?nmeters provide too coarse a measurement for
optical surfaces. As illustrated in Fig. 5.2 the electron microscope
works nicely on the rough ground glass surfaces but fails to yield
sufficient information about the smooth polished surfaces. The FECO
interferometer works well on smooth surfaces with a strong specular
beam but does not yield good results for the rough diffusely reflecting
surfaces since it requires multiple reflections. The latter two com-
plementary techniques were thus utilized in our rcsearch effort.

Surface profiles of rough samples can be determined from
electron-micrograph stereo pairs using conventional stereoc-
photogrammetric techniques (Moffitt, 1959). Nankivell (1963) discusses
some of the stereo-photogrammetric problems unique to electron micro-
scope applications. Electron-micrograph stereo pairs were produced
with bdoth a conventional transmission electron microscope and a
scanning electron microscope at a variety of tilt angles and magnifica-
tions for several surfaces with known characteristics. Considerable
preliminary experimentation with stereo-photogrammetric techniques was
then performed with a variety of stereoscope-parallax bar configurations.

A typical electron-micrograph stereo pair is shown in Fig. 5.14
with a line scribed to indicate the position of a set of preliminary
surface height measurements that were made with a standard Fairchild

Stereocomparagraph. This instrument consists of a mirror stereoscope
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103

whL, SN

RPN

e R S ® Ve o oY atate B,

St stk Mt F8 wa

sy

-




et

B e P e R AR e R AT e RS AR 5 L

fitted with a parallax bar containing a micvometer for measuring the
parallax of each desired pair of points. The resulting surface profile
is also shown in Fig. 5.14. This surface is a very rough ground glass
produced with 30 um grit. The tedious procedure of obtaining surface
profiles in this manner becomes increasingly more difficult as the
surface becomes smoother.

The two statistical parameters which determine the scattered
light characteristics are the variance of the surface height distribu-
tion and the surface autocorrelation function. A computer program (see
Appendix D) was written which takes the surface profile data and
determines the above two parameters. An electron micrograph showing
the surface of Sample #172 magnified 10,000 times is illustrated in
Fig. 5.15 along with the surface profile, surface height distribution
function, and the surface autocovariance function. One hundred-twenty
data points were used for obtaining these surface parameters. Addi-
tional data was recorded to determine the degree to which the surface
was homogencous and isotropic.

Surface profiles of several smooth samples were measured by
Dr. Jean Bennett at the Naval Weapons Center on a scanning FECO inter-
ferometer (see Appendix E) capable of determining very small height
differences with a lateral resolution of 2 ym. This instrument, along
with auxiliary equipment which includes a slow-scan TV camera, signal
averager, minicomputer, and teletype unit, yields the surface profile,
ms roughness, surface height distribution function, surface autocovar-

iance function, and other statistical properties of optical surfaces.
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The results of these measurements on Sample #198 are shown in
Fig. 5.16.

The rms surface roughness was also predicted from visual mea-
surements of the FECO fringe widths, as well as from total integrated
scatter measurements performed at the Naval Weapons Center. Additional
scattered light measurements made on a few samples allowed the autoco-
variance length to be calculated when assuming the autocovariance

function to be Gaussian.

Comparison of Predictions with Measurements

Theoretical predictions of surface characteristics for Sample
#172 were shown in Fig. 5.7. Direct comparison with the results of the
surface measurements shown in Fig. 5,15 indicate that the values for
the rms surface roughness differ by approximately a factor of three and
the widths of the autocovariance function (distance to the first zero)
differ by approximately 20 per cent. Under the circumstances involved
this can be considered to be remarkably good agreement since this sur-
face is so rough as to make the theory somewhat suspect and not rough
enough for the electron-micrograph stereo measurements to be considered
reliable.

The predictions of surface characteristics based upon scattered
light measurements from smooth surfaces are tabulated in Table 5.1 along
with the results of independent measurements performed at the Naval
Weapons Center. The rms surface roughness of a few samples was

determined both from total integrated scatter measurements and from
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visual measurement of the FECO fringe widths. The wide variation in
the results of these two techniques for Sample #186 and Sample #163 was
attributed to nonuniform roughness over the surface of the sample. The
surface autocovariance width determined from the scanning FECO inter-
ferometer is one to two orders of magnitude larger than that theoreti-
cally predicted from scattered light measurements. This is due to

the poor lateral resolution of the instrument. The surface autocovari-
ance width predicted from a simple theory which assumes a Gaussian
shape for the autocovariance function does compare favorably with our
predictions. The autocovariance widths tabulated in Table 5.1 are
arbitrarily chosen to be the half-width of the surface autucovariance

function at 1/Y€ times its maximum height.

Indirect Verification of Inverse Scattering Solution

The accurate determination of micro-structure on an optical
surface has been shown to be extremely difficult to accomplish by
direct measurement (therein lies the motivation for attempting to solve
the inverse scattering problem). However, our theoretical treatment of
the inverse scattering problem can be tested indirectly by using the
surface characteristics predicted from scattered light measurements at
a given wavelength to calculate the scattered light behavior at a dif-
ferent wavelength. This calculated scattering function can then be
readily compared to the directly measurec scattering function at that
wavelength. Figure 5.17 provides a direct comparison of the measured
scattering function from Sample #184 at A = 0.6328 um to that predicted

fron surface characteristics determined from scattered light
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measurements at A = 0.4579 um. The remarkable agreement displayed pro-
vides experimental verification of our theoretical treatment of the

inverse scattering problem, at least for smooth surfaces.

Wavelength Effects

The transfer function characterization of scattering surfaces
developed in Chapter 3 offers a simple means of determining the wave-
length dependence of the scattered light behavior. Once the surface
characteristics are known (whether from direct measurement or calcu-
lated from scattered light data), the same theory provides a simple
method of predicting the scattering function at any desired wavelength.

This technique of predicting the scattering behavior as a func-
tion of wavelength has been experimentally verified (see Fig. 5.17) for
wavelength ranges limited to the visible spectrum. Furthermore, the
same data can be used to verify the wavelength scaling law for smooth
surfaces stated in Eq. (70). This is illustrated in Fig. 5.18.

Similar attempts to predict the scattering properties of a sur-
face at a wavelength of 10,6 um from measured data in the visible was
not successful. This failure was due to the greatly expanded angular
width of the scattering function at long wavelengths as described by
the wavelength scaling law, and is illustrated in Fig. 5.19. Note that
scattered light measurements over angular range from 1° to 46° at a
wavelength of 0.4579 um can be used to predict the scattering behavior
from 1.4° to 90° for a wavelength of 0.6328 um. However, these same
measurements provide only a few data points in the angular range from

1° to 2.5° that are useful in predicting the scattering behavior for a
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wavelength of 10.6 ym, and no information is obtained céncerning the
scattered light behavior at angles less than 24°.

It is now clear that it may not be possible to compare the
scatterc¢ tntensity of two widely separated wavelengths in a given
direction without extiapolating one curve. However, this behavior has
the advantage of allowing one to determine the scattering characteris-
tics at very small angles (unobtainable by direct measurement due to

mechanical constraints) by making large angle scatter measurements at a

longer wavelength. The angular range of validity for predictions of
scattered light behavior based upon measurements from 1° to 80° at

10.6 um is presented as a functiou of wavelength in Fig. 5.20. For
example, measurements from 1° to 80° at a wavelength of 10.6 um could
be used to predict the scattering properties of visible light

(A = 0.5 um) in an angular range from approximately 0.045° to 2.7°. Or
conversely, if one has the capability of making very small angle mea-
surements in the visible, the wide angle scattering characteristics at

a Jonger wavelength can be determined.
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CHAPTER 6
CONCLUSION

This study hss been a general investigation of surface scatter
phenomena dealing with several different aspects of scattered light
behavior. An elementary theoretical development based upon scalar dif-
fraction thecry has been presented. Linear systems theory and modern
Fourier techniques result in a theoretical model of light scattering
systems which closely parallels the highly successful theory of iso-
planatic imaging systems. An extensive experimental program has
accompanied this theoretical development in an attempt to verify

theoretical predictions.

Summary of Results

An analytical expression has been obtained for a surface trans-
fer function which relates the surface micro-structure to the scattered
distribution of radiation from that surface. The existence of such a

transfer function implies a shift-invariant scattering function which

does not change shape with the angle of the incident beam. This is a
rather significant development which greatly reduces the quantity of
data required to completely characterize the scattering properties of a
surface. For a large class of well-behaved surfaces this transfer
function is described in term:s of only the rms surface roughness and

the surface autocovariance function. This transfer function thus
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provides a straightforward solution to the inverse scattering problem

(i.e., determining the surface characteristics from scattered light
measurements). Once the surface characteristics are known, the same
theory provides an equally simple method of predicting the wavelength
dependence of the scattered light distribution.

Experimental verification of the shift-invariant scattering
function has been successfully demonstrated for smooth surfaces (0W<<x).
The scattered light measurements from rough (diffusely reflecting) sur-
faces results in a scattering function which is shift-invariant over
only a small range of angles and departs significantly from the pre-
dicted behavior at large scattering angles.

A computer program has been developed that operates upon
scattered light data to yield the total integrated scatter, the surface
transfer function, the rms surface roughness, and the surface autoco-
variance function. Although accurate determination of micro-structure
on optical surfaces is extremely difficult to accomplish by direct
measurement (thus the motivation for attempting to solve the inverse
scattering problem), favorable comparisons of predicted surface charac-
teristics with the corresponding measured quantities have been demon-
strated for both smooth surfaces and moderately rough surfaces. In

addition, experimental verification of the inverse scattering program
was accomplished indirectly by supplying scattered light data of one
wavelength as input to the inverse scattering program in order to deter-
mine the relevant surface characteristics; then this information was

used to predict the scattering function at a different wavelength.
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Excellent agreement with the measured scattering function at that
wavelength was achieved.

Since the above rechnique involves numerical computations on
sampled data, an analytical expressiou for a waveiength scaling law is
not required to determine the scattering function at any desired wave-
length. However, in order to gain insight into the wavelength depen-
dence of surface scatter phenomena, a wavelength scaling law for smooth
surfaces was derived and verified. This scaling law consists of a
change in the scattering angle as well as a change in the amplitude of
the scattering function with changes in wavelength. It therefore pro-
vides a valuable tool for predicting the scattering behavior in certain
angular regions or wavelength ranges where direct measurements are

difficult to obtain.

Further Theoretical Considerations

ilo explicit approximations concerning the size of the surface
variations were made in the theoretical development presented in Chap-
ter 3. However, a simplifying assumption was made regarding the random
component of the pupil function described in Eq. (33). It was assumed
that the phase variations in the disturbance emerging from the scatter-
ing surface were equal to the perturbations introduced onto a normally
incident wavefront., Careful examination of Fig. 6.1 reveals that the
phase difference introduced by reflection from a rough surface depends
upon both the angle of incidence and the angle of observation in addi-
tion to the surface height at the point of reflection. The phase

variations along the scattering surface can thus be expressed as
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Fig. 6.1. TIllustration of the Phase Variation
Introduced by Reflection from a
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$(E,5) = 2(yey IHG(2,0)

A PG Ry

i where (78)

TR AR

Y = cosh, Yo = coseo.

G A AU

The effective transfer function of a scattering surface is now

A given by the following general expression

| [ - S8

Hp@,5) = e W 79)
.

b

; This expression can be interpreted as a two-parameter family of trans-
i fer functions, one for every possible angle of incidence and every

g possible scattering angle.

g This generalization still leaves us with a theoretical model
; closely paralleling that of non-isoplanatic imaging systems which can
i i be characterized by a different transfer function for each off-

;% axis object point. It therefore seems reasonable that an "aberration
§5 theory" of scattering systems can be developed to provide more insight
% into the scattering behavior of rough surfaces.

? A preliminary empirical search for a new scattering function

z of the form (Y+Yo)m,8(u,8) plotted versus the quantity (B-Bo)/(y+yo)"
% resulted in the following interesting dilemma, When m=2 and n=1, the
? : + scattering function for Sample #172 indeed becomes quite shift-invariant
g with respect to changes in the incident angle (there is a theoretical

; basis for this particular form of the scattering function if some

;Eﬁ

assumptions are made concerning the shape of the surface autocovariance

function). However, this same scattering function degrades the
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shift-invariance of Sample #200. Clearly a more general theory should

also work for the special case of smooth surfaces.

e Suggestions for Further Research
The following suggestions are made for further research in the

area of surface scatter phenomena:

i

a3 01
SN S
S

% 1. Continue the theoretical development on the transfer function
g characterization of scattering surfaces. This should include an
attempt to solve the inverse scattering problem for rough surfaces
by using the general expression for the transfer function described
by Eq. (79). Empirical curve fitting techniques may be useful in an
attempt to discover new scattering functions or plotting techniques
which result in shift-invariant behavior with respect to changes in

the incident angle. Generalizing the surface scatter theory to a

complete vector treatment while maintaining the transfer function
approach would be a major contribution to the understanding of sur-
face scatter phenomena.

2. Improve the scattered light measuring capabilities by
obtaining laser sources that span a larger wavelength range.

3. Automate the scattering apparatus for high-speed acquisi-

A tion and analysis.
AR 4. Acquire samples and perform measurements upon selected

4 moderately rough surfaces (0.1<0<1.0) and compare with theoretical

predictions.
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APPENDIX A

CALCULATION OF ABERRATION COEFFICIENTS
FOR DIFFRACTED WAVE FIELDS

For the case of a plane wave incident upon an aperture, the
diffracted wave field on an observation plane is given by Eqs. (16) and

(17), where
o= R-8) + (@'2 + §'9)/8. (A.1)

The quantity £ can be written as

b= /@EENT Y @92 + 22

"

8 V1 + [82+48'2 - 2(22'+§")]/82, (A.2)
where
82 = 224 92’ 812 = a2 4 g|2.

A binomial expansion of the above square root results in the following

A

expression for W

W= 3 [a% 4 ar2ye

[§b+§|h+4(&£|+gg|)2+2§23'2_432(££v+gg|)_48'2(xx|+yyn)]/zu

'
oo} 2

+ higher-order terms. (A.3)
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If we assume a rotationally-symmetric diffracting aperture we
can, without loss of generality, choose the observation point on the
y-axis. Let us therefore set & = 0. We can then let & = j and

§' = &' cos¢, hence

0o 51 v 82/
- %[f/'+ + 8" + 4528'2 cos?¢ + 2§28'2 - 45% " cos¢
- 438'3 cos¢]/&"
+ higher-order terms. (/ .4)

If we now substitute

[ S13 -4

i PIpax> 8 a

intc the previous equation, we obtain

W= 5 [ 02+ @/2)% 321782
- L g0+ @200 3%+ 4, 2(@/2)7 027 cos?y
+ 25 2 (@/2)% o2 - 4, 3(d/2) 0% cos
- 4§ 3(d/2)3 pa® cos¢]/z"
+ higher-order terms. (A.S)

Equating coefficients of corresponding terms between this equa-
tion and the wavefront aberration function given by Eq. (24), we obtain

the aberration coefficients tabulated in the first column of Table 2.1.

123




If we now have a spherical wave incident upon the aperture, the

quantity W in Eq. (17) is given by

~

W= (B-8) - (p-8) + @' + §5")/3, (A.6)

where

b, = ATvgzvez = /187252

A binomial expansion of this quantity results in
% " é A ~ 2 ~ ~
Lo -3 = 3-(8'/3)2 -3 (s'/z)“ + ... . (A.7)

But these will merely cancel identical terms in the previous expansion
thus resulting in the aberration coefficients presented in column two of
Table 2.1.

For the case of a hemispherical observation space the diffracted
wave field is given by Eqs. (22) and (23). With a plane wave incident

upon the aperture, we have
W= (R-P) + (aB' + BYY). (A.8)

The quantity £ can be written as

L = /@EEIZ* (-9)2 + 32
= p /1 + [8'2 - 2p(aR' + Bg')1/82 , (A.9)
where
§'2 = ﬁ'-’.’ + g|2, f.2 = &2 + 1?2 + 22
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A binomial expansion of the above square root yields

Vo= G1/M2 - %_[gvu - 4§§|Z(G§v+5gv) + 4i2(a£|+3g.)2]/ﬁu

L] L2

+ higher-ovder terms. (A.10)

If we again assume a rotationally-symmetric diffracting aperture
we can, without loss of generality, choose the observation point on the
j-axis. Let us therefore set a = 0. We can also let j' = &' cos¢ which

results in
W= Z @2 - L(ah - apear? cosy + 49262812 cos?e]/pt

+ higher-order terms. (A.11)

If we now substitute

[]
&
)R>

B = pB §'
into the previous equation, we obtain
Vo= L (/292 a2 - § [(@/D)" 2" - 4i8pax (d/2)° 803 cose

+ 4p2g . 2 (d/2)2 8202 cos2¢]/pY
+ higher-order terms. (A.12)

Again equating coefficients of corresponding terms between this
equation and the wavefront aberration function given by Eq. (24), we
obtain the aberration coefficients tabulated in column three of

Table 2.1.
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If we now have a spherical wave illuminating the aperture and a

hemispherical observation space, the quantity ﬁ in Eq. (23) is given by

Vo= @-8) - Bo-1) + (a&' + BY"), (A.13)

where

B, = BT I+ = p/T+8</P2.

A binomial expansion of this quantity results in

@ mE - Eem e . (A.14)

&>
'
>
]
oy

Once again these terms merely cancel identical terms in the previous
expansion, leaving only coma and astigmatism present in the diffracted

wave field as indicated in the last column of Table 2.1.
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APPENDIX B
BIDIRECTIONAL REFLECTANCE DISTRIBUTION FUNCTION

The basic quantity that characterizes (geometrically) the
reflecting properties of a surface element dA is the bidirectional

ref'ectance distribution function (BRDF). This quantity

Fp0is85 Oppép) = dL,(85,045 Opsbps Ef)/dE,(87,94)

dL (87,053 Opsbps Ef)/L;(67,47)dRy (sr7h)
(B.1)

is defined by Nicodemus (1970), as the reflected radiance

dLp(84,973 Op>dps Eg) of the surface element dA in the direction (8y,¢p)

divided by the incident irradiance dE;(6¢,¢¢) = Li(67,¢2)d9¢ producing

it, The geometry of this situation is illustrated in Fig. B.1, where

the element of projected solid angle is given by df = cosédw.

The numerical value of the BRDF for a given pair of incident and
reflected ray directions may vary frcm zero to infinity. In particular,
consider two ideal cases. The BRDF is a constant for all reflected
directions for a perfectly diffuse (Lambertian) surface; and it becomes
infinite (as a Dirac delta function) for a perfectly specular reflactor.
The BRDF, defined above as a ratio of infinitesimals, is an idealized

concept that can never be measured exactly. Real measurements are
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Figo B.l'

nN

Geometry of lncident and Reflected Elementary Beams
Used to Define the Bidirectional Reflectance Dis-
tribution Function,
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always made over some finite solid angle and wavelength interval and can
therefore yield only average values fp over those parameter intervals.

The BRDF is basic in the sense that all other reflectance or
scattering functions can be derived from it. For example, Judd (1967)
lists nine different kinds of reflectance functions based on the angular
extent of the incident and reflected radiation. All of them can be
derived from the BRDF,

Note that the BRDF is a four-dimensional quantity that can be
thought of as an infinite family of two-dimensional light distribution
functions--one for every possible angle at which the incident beam can
strike the surface element. This involves an overwhelming quantity of
data, especially where high directional resolution is needed to

describe glints and specularities.

129

[P PN |




PRI RELTOTIR St e TR < L R A o TEUT SR TR AR SRR RIS R PN

APPENDIX C
COMPUTER PROGRAM FOR INVERSE SCATTERING PROBLEM

The following is a computer program for calculating the effec-

tive transfer function, the rms surface roughness and the surface
autocovariance function from scattered light data. Once these surface
characteristics are known, the same program can be used to predict the

scattering properties at a different wavelength,
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TR M d,  rt b e

C onn
00y
994dH

C aer

C war

10

2n
3n

an

99

C e
Qupo
971
9202
99a¢

(7 ML TR

992}y
992p
99.:3
99nA
C 2an

C aen

C aen

PROGRAM SSMAIN(INPUT,0UTPUT,, TAPESaINPUT, TAPE6SOUTPUT)

INTEGER RUIITE

COMNDN RS(SKW), BR(3NMY, CSURN(3AN), W(8WP), SCALE, WAVE, RMS

CoMann NS, 1S, IA, ROUTE, SAMPLE

DATa TYPEL, TYPE2, TYPE3, FADP/YHSURF, 4HAUTO, L4HSCAY, 4HENDP/

DATA IFLAGZWY/

BARPRANRAPARCRNRANARANR AR RN ARNARNE RSO RO A R AN AN AR R AP RO RAR RN ARARAARANS

FORMAT(AG,102,44)

FORMAT(INY pA (/7)o 10(32K, 31HERROKR IN PTYPEL? OF PRUGKAN DATA,/7))

PRI AR ANAR R AR RN RARN AN A AR N AT A RAR R CANN P ARAANRAC N NN R ARRIANRARRRANRN S

READ YYPE NF DATA USF

READ(S,92401) SAMPLE, WNUTtk, TYPE

IF(TYPELEQ,TYPHL) GO 1N 24

IFI(TYPELEILIYPFR) GO TN 3

IFCTIYPE B0, TYRE LY GO TN 44

THOYYPE (B LLENDPY GO TU 29

WITTE(6h,9994)

f) 0 99

CALL SURF

16 afey

CAlL AUTO(TFLAR)

TFL afied

Gy TN 19

Call SCav

") TH 4

CalL EXtY

LA ]

SUAIDUTIVE SURF

THIFGFR ROUTF

REAL v, M1, 8(300), F(4), FISH), v(3ow)

Copnian BSE3CR), BOE3GT), CSLAW(INE), H(3Q0Q), SCALF, WAVE, RMS

COMMON NS, NTNOT, TA , KUUTE, SAMPLE

EGUIVALENCE ($,E(1)), (S1,E(2)),(82,E(3)),(8%,FE(4))

DATAL ISTAR/{Hay

RRRARR P EARRK AR A RARCRAANRCANCRRAE P AR R R CANRAARA PR R R P AN RANRARACRARRA NN

FOHMAYHS.Epllo13.1X.F?.lolx,f!".a)

f(Wt‘.AT(F"\.{‘,!X.FS.l,lt.IS,!X,!2)

FOUMST (2RFS,2)

FURNAT(IHY, P2A(/), SPX, 2UHSURFACE PRUFILE DAYA,//,
SUX, 19HATTH WAVELENGTK OF ,E10,4,TH MICRON,//,
S?X, PHHANARPHEY WITH A SCALE FACTNR , F3,1,//,
5‘}!. 1‘.-‘N$MMPLE .:'J.' l" ‘“)

FORNMAY (1HY, 1SHSURFACFE PROFILE)

FORDAT (/,1€%,4HRMS8,EQ9,3,6H YHINS,E9, 3,64 YMAXS,E9,3,//)

FORMAT (X, 13,10144)

FORMBT( /7,0, 9HHISTNGRAM)

REPARRACARRNARRRARANANR AN A AANAPANRANRNNARCANAACCRRCAEARARODOGARPAAN

NTDTs))

0S8 1S SAMPLIMNG NISTANCT N PHOTO IN MM

READ(S,%000) DS, TA, SCALE, WAVE

REAL (S5,9901) M1, Z, “OEY, NDEX

287/57,2954

no 5 tsg,a

£(1) » 3,

READ (5,99¢2) (A(1),1s),MREX)

PaRALLAX EQUATIUN

Bsa(y)

Ca2rP1aSIN(2)

V0 §9 Ist,MDEX
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1@
C #an

A(YIs(A(])=BY/C
SES4A(])

DATA CONVERSION FOR SURFACE PROFILE

XxsMngx/e,

§

2

e it S AT A e

st

< s

¥YsS/MDEX
D 208 1sy,HPFX
St1Enie(I~X) 2 (A(1)~Y)
§2352¢(1=X)xn2,
2V 53xa3+(A(1)my nn2,
M3§1/32
RaYeMa)
DO 25 Is),MDEX
A(TISA(I)=(Mn]¢n)
1088INT «
25 L(ILY=ACT)
NTOT = NTOT « MDEX
IF(MEX,LE,¥8) GU YO &
05=PS/ML 21200
WRITE(6,9904) WAVE, SCALE, SAMPLE
WRITE (8,7941)
CALL PRINT(D,LS,NTNTY,2)
C »an FIND YMAX AND YMIN
L1 14
Yien(y)
YosP (1)
N0 % Tat,NYOY
SaSen(Y)es2,
IF(Y1,6F,0(1)) GO YO 3@
Y1s0(1)
6O tn 39
30 JFLY2,LE,D(L)) 60 TO 3§
yash(1) |
35 CONTINUE
C s2n TAHULATE THE HISTOGRAM AND CALCULATE RMS
Xu(Y]=Y2)/NDEX
DO a4y Ist,NDEX
ap F(1)sP,.
0O &N Ixt,NTNY
DO S» Ksf,NNEX
LekeNNFYX/2,
IF(N(T).GT,LeX) G50 TN SO
C(k)3F(K) 4%
G0 T0 6@
S0 CONTIMUE
¢ CONTINUE
wR11E (6,9904)
RMSe(S/NTTOT) AR,
WRITE (6,9902) RMS, Y2, ¥Y§
0U 79 Tat,NOEX
NHef (1)
Nk§aMHe |
¥ HWRITE (6,9923) N, (1STAIRL,K2» 1, ,NHL)
C ana CALCULATE THE SURFACE AUTOCOVARIANCE
00 9% 1=1,NYOT
CSUEr (1) 89,
NITs(NTOTel)+}
DD 82 K3y, ,NTT
6P CSHBW(I)SCSUBA(]) ¢ D(K)sD(K+]=}])
92 CSUBW(I)SCSURA(T)2DS
RETURN
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END
SUBRNDUTINE AUTN(TIFLAG)
INTEGER ROUTE
COMMNN RS (314A), RG(3PYH), CSUAW(300), H(3AB), SCALE, WAVE, RMS
CoOMMON DS, 1S, TA, RNOUTE, SAMPLE
DATA PYI/3,1415921/
C 908 AR RAP AN AL ARRRRA S AR R AARR R AN N BN AR A AR AN AR ARSI AANKN RN R AANRANRNARANAR
QOPNQ FORYAT(FP,1,1%X,E100,0)
99A1 FORAAT (F&,4, 2(13, 1x), F2,.8, 1x, E3é,4, 1X, E9,3)
9np2 FOWMAT( 8(F9,3,1X))
99u0 FORHMAT(IML, 20(/), SAX, PTHSL IFACE AUTOCOVARTIANCE DATA,//,
{ SAX, 194 TTH WAVELENGTH OF ,E1i,4,7TH MICRON,//,
2 SUX, PHHGRAPHEN W1Td A SCALE FACTOR , F3,1,7/,
3 SAX, {VWHSAMPLF MD,, 1Y, AQ)
99021 FORMAY (1H1, 19HSCATTERING FUNLYTON)
992 FORMAY (/7,294 THR PFS S IRFACF ROVUGHNESS IS, F9,3, TH MICRON)
9923 FORMAT(3HY, 42H(SYSTEM) FOHKTEZR-RESSFL TRANSFORM FUNCTYTION)
9974 FOMMAY (1H], 31HSUKFACE AUTNCOVARTIAMCE FUNCYINN)
99015 FORMAT({HL, 1 7-HTRANSFER FUNCT [ON)
C AR RACR AN RRARN N AR RN R AP AR AN AR ARSI NACRRARCRARARARACI N RARR AP AERCR I RAARRNAN
IF(RDUTE LERW) GO TO 4
READ(S,92M¢) SHALE, WAVE
WRITE(6,99¢0) NAVE, SCALE, SAMPLE
4 TFQLFLAR,ED,1) GO TO S
READ(S,90%28) NS, IS, 1A, SCALE, WAVF, RMS
REAI(S5,9042) (CSuUBA(t), Is3,18)
WRITL(R,99,") haVE, SCALE, SAHMPLE
5 wRIVE(A,9944)
WRYITF (6,9992) RMS
CALL PRINI(CSUBW,08,18,2)
NSsNS/WAVE
C wex CALCULATE ThE TRANSFER FUNCTION
DO 10 Im1,T10
10 H(Y)YRE P ((4eP[/HAVF) and  w (CSURN(T)mRMSR22,))
WRITC (h,9905%)
CALL PRINT(M,0S,15,1)
€ sxw CALCULATE H FRUA RMS SURFACE PDUGHNESS
Rl ol ,/EAP((RMS#UaPT/WAVIY 802 )
C wxa FIND THE (SYSTEM) FOURJrkeBESLEL TRANSFORM FUNCTION
00 21 123,18
2f BU(1)SH(I) ¢ (Rmy,)
WRITE(6,9903)
CALL PRINT(#0,DS,18,1)
C ese DETERMINE THF QUTPUT INTFRVAL DA
DAs, Q2
see FIND THE SCATTERING FUNCTIOM
CALL HANKEL (RD,DS,1S5,83,0A,1A)
WRITF(6,9921)
CALL PRINT(RS,DA,TA,3)
C aan FIUND THE (SYSIEM) FOURTER=PESS‘ | TRINSFORM FURCTION
XH:]S-]
DO 30 Tei,1S
8=y
30 BOCIISRUCII*EXP(wPla(X/XM)282,)
WRTTF (6,990%)
CALL PRIHT(NN,1S,18,1)
C eax FIND THE SCAYTERINDG FUNCTION
CALL HANKEL (RQ,DS8,18,B5,04,14)
WRITE{6,9901)
CALL PRINT(8S,DA,14,3)

te ]
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RETURN
END
SUBHOUTINE SCAT
THTEGER ROUTE
COMMON AS(30N), BO(IANY,; CSUNW(3AR), H(30M), SCALE, WAVE, RMS
COMMFOM DS, 1S, IA, ROUTE, SAMPLE
DATA P1/73,1415927/
C AR ARRAAREON AR N RANNE RPN AR AR R AN N AANARR RN RN RANRNNEANRARRNNANARANTNRNANR AR
9NUs FUR! AT(F3,2, 1Y, 213, 1X), FP.1, 1Y, E1¢,4)
R0? FORMAT( A(EG,3,1X)) .
99013 FORMAT(IME, 2R(/), SAX, P2UHSCAYTERING FUNCYIONM DATA,//,
SAY, 19HWITH WAVELENGTH OF ,E10,4,7TH MICRON,//,
SOX, 2BMOGRAPHEL WITH A SCALE FACYUR , F3,%,/7/,
50X, 1CHSAMPLE NO,, 11X, A4)
9901 FOPMAT(IHY, 19HSCATTERING FULCTION)
9922 FORMAT(//,294 THE RMS SURFACE ROYGHNESS 18, E9,3, TH MICRON)
990 FORMAT (1ML, 4PH(SYSTEM) FOUNIFRwBEFSSEL TRANSFORM FUNCTION)
994 FOKEAY(1H]), SIHSURFACE AUTOUNVAKIAMCE FUNCTION)
99¢% FUKMAT(IHL, P4hSYSTEM ThANSFER FUNCYION)
C AAN ERAV RN AN PN A RANRARANS AN R AR RN AN TR RAR G ARNANANAN R AR AR ACANO RN N ARANRNRA NS
READ(%,94A03) D&, 1A, 1S, SCALF, WAVE
KEADTES, 9022) (KS(1), Isi,1A)
WRITF (5,990¢) AAVE, SCALE, SAMPLE
HRITE (h,9901)
CALL PEINT(KS,DA,14,3)
€ way DETERMINE THE OUTFUT INTERVAL DS (ASSUMING AR IS NOMINCREASING)
CALL INTER(nS,NA,1A,NS8,15,4)
TF(RODTE EQ,0) DS3,2/AAVF
NSNS aSCALE
C wwe FIND THE (SYSTFM) FUURIER=RESSEL TRAMSFORM FUNCTION
CALL HANKEL(RS,NA,TA,B0,0S,18)
WhITE (6,9903)
CALL PRINT(RA,NS,TS8,1)
C #ans CALCULAYE THE TRANSFER FUNCTION
Bsf0fy)
DN 20 1e1,1S
2¢ H(1)s(1,=R) ¢ KRQ(])
WRITF (h,9905)
CalLL PRIMT(H,NS,18,1)
C anse CALCULATF SIG™A SLUARED AND RMS
SIRSOa(#AVE/ (G, aFI)) a2, 8AL0G(1,/7(1,=B))
RMS & SIGSNxe,%
C wae CALCHLATE THF SURFACE AUTOCOVARTANCE FUNCTION
D0 33 181,18
34 CSULY (1)8 (nAVE/ (4, #PI) )1 ua,0al0G(H(TI)) + SIGSO
0S5 8 DSeWAVE
WRITE (K, 9904)
WiTTE (4,9902) RMS
CALL PRINT(CSUBM,NS,18,2)
TF(RONTELEQ,1) CALL AUTO(1)
RETURN
EnD
SURRNMUTINE INTER(X,DY,1X,D2,12:1FLAG)
REAL A(3e2), DZS(5)
DATA EPS/ 4217, DIS/48e 20 P50 Sy 1o/
IMAX D
YMAYSX (1)
NS Ye2,1X
TF{YMAX,GF,X(1)) GO YO §
Yuaxss(l)

W N e
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InAxel

C:"JY!:JUE

D2uYIANKEPS

IF(IfFLan,rN. 1) GO TO 2§

00 1v TsTMAX,IX

IF(X(I) .1 T,NZ) GO YO 20

COMT THUE

0281,/(1=1)Y/Nx/1243,

IFCIFLAGLED,2) DIsY,/7(1I=8)/0X712/3,

= ALOGIC:DZ)

ks InNT(u)Yed

IF(n,LT.”) KSINT(B)

TESTs 10,40 {B=K)

00 32 18,5

IF(TEST LE,N2S(1)) GO YO 4@

CUNT JHUE

0ls NZS(1)w10,nakK

RETURN

EnD

SUBRODUTINE PRINT (w,DX,TH, TU)

REAL W (34N, PT(101), UNITS(S)

OATA UNTITO/Z6%_ AMBUA,AHMILRON, 6K BETA /

RRR PR CAR A TAANR AR IR R P ANAN P AN AR N RO RN A RAN NN R RARIRARNN NS

FORIFATI/77,2RX, 00N 0 ,5(12X,ER,2) / 4X,2HX(,Ab,1H),3X,9HAMPLITUDE,
4X118,5(3(Snwrent) ,blirawag))

FORMAY(UY,FQ,%,3%,F9,3,4X,1A141)

REAR AN NN AR AR AANR NN R AR E R RN AARARN PR ANAKRR AN ACARAAANY

DO 10 Isy,1ul

PI(1)siH

e

CALL INTER(W,OX,IN,0AHP,120,1)

WRITE (6,8901) (NAMP&Y, T82¢,17%,20), UNTYS(IU)

D0 30 I=1,1w

PT())siHg

PT(121)win)

KsAQS{w(T)/DANPY + §,%

IF(K,GT,101) Keld}

PT(R)slrn

THEPCT) WL T,0) BT {X)81HO

WRITE (5,9902) X,a(1),P?

PT(K)s*H

Xaxepnyx

CONTY INUE

RETURN

END

SUBROUTINE PANKEL (W,DR,IW,VDKHO,1V)

REAL “0124), v(100)

DAYa C/&,28318%4/

DU 2t Yst,Iv

Asg,

RHOs (=] )aDRHD

00 19 TRxg, W

ReDR& (IR=2)4DR/2,

ASASRA(ACIRY 4 (IR ) YNNI (CoRKHORR)

V(1)saaDRaC/2,

RETURN

END

FUNCTION RJO(X)

IF(Xx,L7,2,)SY0P

BJosy 0
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90

IF(X,EQ,0,IRETURN
CONSY22,/X
Mai8el, 32X

FHist ,DE=28

FMsd,

ALFan,
ME(M/2)22¢1
MisMal

M23Mw)

DO 2iv Key,Mp,2
BMKE (MoK ) aFm]aCONSTwFM
FMeF My

FM§aBMK
Brka(MleX)aFMIaCONST=FM
FHsk My

FM)sBMK
ALFALFeBMK

ALFS? 2aAlFaBMK
BJOSRMK /ALF
RETUKRN

END
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APPENDIX D

COMPUTER PROGRAM FOR PROCESSING SURFACE
PROFILE DATA FROM ELECTRON-MICROGRAPH STEREOCOMPARATOR
The following is a computer program for processing surfcce
profile data from the elesctron-micrograph ste.eocomparator. It
provides the surface height distribution, the rms surface roughness,

and the surface autocovariance function.
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STF

330

380

420

RO 13:0APDT 09717714

PIM AC200), F(200)
RFAD M, Z, N, K|
2=2/517.2958
FOR'I =1 TO N
REaD acl)
NEXT
R = AC1)
C = 2%«MxSINC2)
FZR'1 =1 TC N
ACl) = ¢a(ly - R/
NEXT 1
S =8t =82 = 83 =0

FOR I =t TO N

S =S8 + a(D)

NFXT 1

Y = S/N

X = N/?

FAR I =1 TO N

St = St ¢ (1 = XI%(A(I) =-Y)
§2 = §2 + (1 =Xx)1?

83 = S + (A(C]) -~ Y)1?
NEXT 1

M = S1/82

R =Y - MEX

. = S1/S0R(S52%S53)

S =Yl =Y2 =0

FGR I = ) TO N

a(l) = ACl) - (M*] + B)

S =85 ¢+ Aa(l)2

IF vt > ACI) THFN 330

Yt = ACID)

G8 T0 350

IF Y2 < A(l) THFEN 350

Y2 = AClD)

NXT 1

PRINT “RMS*, "MFRIT FUNCTION®, *“YMAX'™, “YMIN"
PRINT

PRINT SOR(S/N), C» Y1, Y2
D= (Yl - Y2)/KI

FOR 1 = 1 TO Kt

F(Iy = 0

NFXT 1
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A30 FOR 1 = 1 TO N

440 FOR K = 1 TO K1

450 J = K ~-Ki/?

460 IF ACTI) > J*D THEN 490

470 F(K) = F(K) + 1

480 G2 TO S00

490 NEXT K

SO0 NFXT 1

S10 PRINT

520 PRINT

530 PRINT * HF.1GHT DISTRIRUTION"

540 PRINT

50 FGR I = 1 TO K1

S60 PRINT F<CI)

570 F¢1Y = 0

S80 NFXT 1

$S90 PRINT

600 PRINT

610 PRINT N, Y™, “AUUTACQVARIANCF'

620 PRINT

630 FOR 1 I TO N

640 FOR K 1 TO (N=-1)

650 FC1) = FCI) + ACKI*A(K + 1 - 1)

660 NFXT K

670 PRINT I, ACl), Fc¢1)

680 NEXT 1

690 DATA 10000, 4, 40, 1} .

700 DATA 2.20s 2:87» Pe23» 3.05, 3:05, 312, 312, 3413, 3.25
710 DATA 2.90, 2:687» P¢80s2:8353:005 2905 223, 2.87, 2.A73
720 DATA 2865 2652 2765 2.72» 2785 2:785 2:96, 2.82, 2.93
730 DATA 24815 3005 2¢90» 2835 289, 2.90, 2:.98, 2.86, 3.05
740 DATA 2.88, 3.03,2.88,3.29

TS50 NDATA 2.47, 2:33, 23485 238, 228, 2335 2.83, 248, 2.6]1
760 DATA 2.58, 2535 2355 P65 240305 2205 215, 2.22, 2.16
770 DATA 14845 1:92: 2095 2235 2275 2315 2195 195, 2.08
780 DATA 2.00, 1494, 2.10s 2235 2.21, 2.00, 1.89, 2.1?2, 2.20
790 DATA 2.03, 2.00, 2.03» 1.96

800 DATA ?087l 208“' ?0850 ?07|‘ ?0940 ?-87. 3-081 30100 3-95
B10 NATA 2400, 2:975 314, 2.98) 3005 2.98, 3.06,» 270, P.R7
BP0 DATA 2.80,: 2745 2795 3005 Re20s 297, Jelly P76, PR
K30 DATA 2.748, 2.8, 301y Relbs F:06s 279, 273, 2.R5, 2.90
840 DATA 2.73, 2.97% 2.90, 3.00

850 DATA 2.00, 2.08s 2235 2.02, 2.22, 2.20, 2+14, 224, 2,30
860 DATA 2.30, 2:39s 2310 2215 242, 208, 2.38, 237, 2.23
B70 DATA 2295 2:275 2:01:2¢19:2:28s 2427, 221, 234, ?2.08,
B80 NATA 2.295, 2272 2¢150 234, 2440, 2225 2015, 2¢1bs 219
890 DATA 2415, 2.:31s 2.44, 2,52

999 FND
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APPENDIX E

DESCRIPTION OF SCANNING FECO INTERFEROMETER
USED FOR DPETERMINING STATISTICAL
PRCPERTIES OF OPTICAL SURFACES

The following is the manuscript of a paper presented at the
1974 Annual Meeting of the Optical Society of America in Houston,

Texas (J. Bennett, 1974).
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Use of Interferometry for Determining the rms Roughness, Autocovariance
Function, and Other Statistical Properties of Optical Surfaces*

i Jean M. Bennett
Michelson Laboratory, Naval Weapons Center
£ China Lake, California 93555

S N ]
[ L i gy

ABSTRACT

A FECO Scanning Interferometer will be described that can
; measure very small height differences with a lateral resolution
X8 of 2 microns to yield statistics for optical surfaces.

3 The other papers in this Symposium on Techniques in Surface
Interferometry have mainly considered the use of interferometers
E to study the contours on optical surfaces, or more specifically
3 the deviations from the desired surface contours. These devia-
3 tions are sometimes called the figure of the surface, and opti-
b cians frequently taik of half-wave or quarter-wave optical

3 surfaces when they mean that the deviations from a perfect plane
or curved surface are one-half or one-quarter of the wavelength
4 of the light used to test the surface (traditionally the mercury
H green line at 5461 §). The figure of an optical surface is

| important in letermining the resolving power, focusing proper-
ties, and aberrations in an optica! system. For this reason

3 much work has been devoted to interfacing the interferometer,

? which can sense figure errors, to the polishing machine which

3 can eliminate them,

-

A Optical technology has now progressed to the point where
another parameter, the microroughness, also becomes important.
Microroughness on the surface scatters some of the light into
unwanted directions. Scattering cannot only reduce the contrast
in optical images by removing light from the bright areas and
filling in the dark ones, but it can also drastically reduce

the optical throughput of a system long before the resolving
power is affected., Scattering is also a serious problem when
one is trying to observe a weak object that is very close to

a bright object. This situation occurs frequently in astronomy
when, for example, one is trying to observe details in the solar
corona near an occulting disk, or when looking at a faint star
located close to the moon or a bright star.

The problem of scattering from optical surfaces has been
around for a long time. Even before 1900 Albert A. Michelson,
the man best remembered for his measurements of the velocity of

*Reproduced here with permission of the author,
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light and the Michelson-Morley experiment, thought about light
scattering. At the Michelson Museum in China Lake we found

an entry scribbled in cne of Michelson's pocket notebooks
along with shopping lists, a prescription, notes for a coming
lecture, possible causes of error in an experiment, and other
diverse items. The entry is shown in Slide 1 and reads, 'Find
relation between roughness of surface and angle of scattering.
Much has happened in the 80 or so intervening years, but we
still have not satisfactorily solved the problem Michelson
hastily noted down around 1890.

What we have learned about the relation between surface
roughness and scattered light is that the total hemispherical
scatter from a surface (i.e., all the light scattered into a
hemisphere) is related primarily to the heights of the surface
irregularities when these heights are small compared to the
wavelength of light. By measuring the total hemispherical
scatter (frequently rcalled TIS for short) and assuming a
Gaussian distribution for the heights of the irregularities,
we can obtain a value for the rms roughness of the surface.
For many types of surfaces, particularly polished glass, fused
quartz, calcium and magnesium fluorides, etc., this rms rough-
ness value is in excellent agreement with the roughness value
obtained from interferometric measurements, a technique I will
describe in detail in a few minutes. However, where the scat-
tering theory falls short is in predicting the effects of
scattered light from uausual optical surfaces such as polished
alkali halides, polished metals, electropolished metals, and
micromachined metals. In these cases TIS measurements can
yield an effective rms roughness value that is either consid-
erably smaller or considerably larger than the interferometri-
cally measured value. More troubling even than this is the
observation that we are not able to correctly predict the
angular dependence of scattered light about the specular dir-
ection even for the smoothest polished glass surfaces. This
situation arises because all the scattering theories assume
a Gaussian autocovariance or autocorrelation function for the
surface and none of the real surfaces we have studied have
Gaussian autocovariance functions. For this reason, in order
to have a theory which correctly predicts the effects of scat-
tering from a surface, we need to know the autocovariance func-
tion and other statistics of the actual surface. How to
measure these statistical properties is the subject I am going
to discuss for the remainder of my talk.

Interferometry has been shown to be an excellent method
for looking at very small height differences on surfaces, height
differences of a few angstroms, i.e., a few thousandths of the
wavelength of light. Tolansky pioneered this type of inter-
ferometric technique and gave the interference fringes the
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enigmatic name of Fringes of Equal Chromatic Order, or FECO for
short. The two main things that are important about this type
of intereference fringes are (1) that they contour height varia-
tions on surfaces, and (2) they occur as wiggly black lines in

a continuous spectrum of light reflected from the interferometer.
1 am making the second point to distinguish FECO fringes from
the more common Fizeau fringes which also contour irregularities
on optical surfaces, but which are formed in monochromatic light.
FECO fringes have advantages over Fizeau fringes in that the
order of interference of the fringe is always known, and small
areas of the surfaces can be studied at will without having to
readjust the tilt of the interferometer plates.

I am now going to describe a FECO system we have built to
measure the statistical properties of various types of optical
surfaces and I will show you samples of the data we have obtained
with this system. I will also mention some types of experiments
we are planning for the future.

A photograph of the FECO Scanning Interferometer is shown
in Slide 2, Most of the instrument consists of & signal averager,
minicomputer and teletype, and the interferometer, the heart of
the experiment, is the smallest part. The optical arrangement
is shown in Slide 3. The interferometer I consists of the sample
to be studied, coated with an opaque layer of silver (upper
plate) and a super smooth surface of polished fused quart:z
coated with a semi-transparent film of silver of approximately
95% reflectance. The two optical surfaces are very close
together, being separated by only a few half wavelengths of
light. The actual spacer consists of the dust particles on
the two surfaces. The interferometer is illuminated in reflec-
tion by a collimated beam of white light from a xenon arc. The
important feature of the FECO system is lens Lo which focuses
an image of the interferometer surfaces on the slit S of a con-
stant deviation spectrograph. Thus, the interference fringes
which are viewed in the focal plane of the spectrograph contour
the irregularities on the pair of optical surfaces. A picture
of what might be observed is shown in the circular inset.

Threce mercury lines are included for wavelength calibration
purposes, but the information about the surface topography is
given in the wiggly interference fringe. There is a one-to-
one correspondence between the wiggles on the interference
fringe and height variations on the pair of optical surfaces.
To get an idea of the magnitudes of the quantities we are deal-
ing with, the wavelength variations can yield information about
variations of the heights of irregularities «f the order of a
few angstroms. The lateral resolution is much smaller, so that
the length of the interference fringe corresponds to a distance
of one mm on the interferometer surface. The width of the
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spectrograph slit determines the other dimension, so we are
actually looking at an area one mm long by about 2 microns
wide.

To obtain the statistics for the section of the inter-
ferometer surface we are observing, we scan the spectrum line
by line using a special slow scan TV camera. After suitable
ageraging, the information on one scan line appears as shown
in the upper right hand part of the siide. The desired infor-
mation is the wavelength of the portion of the interference
fringe included in the scan line and this is obtained from
the computer analysis. The information from the entire frame
consists of wavelengths of 512 equally spaced points on the
interference fringe, so we have data for 512 different areas
on the surface, each one of which is a little square 2 microns
on a side. In the statistical analysis a least squares
quadratic curve is calculated from all 512 wavelengths and
defines the mean surface level. Then wavelength differences
from this curve are converted into height differences above
and below the mean surface level. Using the height differences
we can determine the rms roughness, height distribution func-
tion, slope distribution function, rms slope, autocovariance
function, and other statistical parameters for the surface.

I am now going to show some data that are typical of what
we have obtained for various types of surfaces. We have
studied very smooth glass-type surfaces such as fused quartz,
Cervit, calcium fluoride and magnesium fluoride, polished
alkali halides (potassium chlnride and sodium chloride),
polished metals (copper, beryllium copper, titanium and titan-
ium alloys, molybdenum, and stainless steei), electropolished
nickel, machined copper, and holographic gratings. All of the
smoothest polished glass-type materials have similar statistics,
and Slide 4 shows results for one of these. This is an
extremely smooth calcium fluoride surface polished by Abe
Klugman of the Northrop Corporation and had a visually measured
roughness of 9.4 X rms. At the top of the slide is a Polaroid
photograph of the interference fringe and directly below it is
a TV scan of the center line of the fringe. Note that the
wiggles on the fringe represent height differences of consid-
eratly less than 10 X. The autocovariance function shown below
can be roughly considered as the correlation between noints
on the surface separated by the amount shown on the x axis.

For the very smcoth surfaces there is positive correlation
between closely spaced points but those farther away are
random,

The height and slope distribution functions for the same

surface are shown on Slide 5. Note that both measured distri-
bution functions (the histograms) are very close to Gaussian,
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and actually the smooth curves are Gaussians having the same
areas under the curves as do the measured ones. The slope
distribution function is only half a Gaussian curve because
we do not distinguish between positive and negative slopes.
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Polished alkali halide surfaces and some polished metal
surfaces are similar in that both are composed of macro and
microscratches with no smooth areas in between. In Slide 6
. we see the scanning camera trace for a polished KC1 surface
k¥ and the autocovariance function. Note the oscillations in
the autocovariance function which indicate longer range cor-
it relations than those observed for the smoothest surfaces.

EE Note also that neither this autocovariance function nor the

19 preceding one were Gaussian in shape. In fact, we have never
3 observed an autocovariance function that did have a Gaussian
X shape, In Slide 7 we see that there is slight asymmetry in

kg 0 the height distribution function although the slope distribu-
3 tion function seems to be a very good Gaussian. Incidentally,
k3 I should point out that the rms roughness values shown on the
height distribution function histograms are about a factor of
two smaller than the visually measured values. This is because
the scanning camera does not take into account the width of
the fringe, only its center line. Visually we measure the
extreme width of the fringe and convert thsrpeak-to—valley
roughness to an rms value by dividing by 2V2. There is a very
good linear relationship between visually measured roughnesses
and the values obtained from the scanning camera.
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In Slide 8 we see data for molybdenum, a typical polished
metal surface. The autocovariance function with the oscilla-
tions is similar to that for KCl. The height and slupe distri-
bution functions shown in Slide 9 are reasonably good Gaussians
although there is some raggedness on the height distribution
function,

Recently very low scatter electroless nickel mirrors have
become available. In Slide 10 is shown the autocovariance
function for one of these, which had a visually measured rough-
ness of 23.6 & rms. This surface is a gradually undulating
one with almost no obvious scratches. The autocovariance func-
tion also has a lower frequency oscillation than was observed
for the KC1 and molybdenum surfaces. In S$lide 11 we see that
there is a definite asymmetry in the height distribution func-
tion. There are proportionately more small bumps on the sur-
face than there are small holes. However the slope distribu-
tion function is an extremely good Gaussian.

One of the most interesting surfaces we have encountered
are those made on a special type of lathe by a single point
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diamond tool. Recently we determined the statistics on one
which had a visual roughness value of only 22.5 X rms.

Slide 12 shows that the autocovariance function for this sur-
face has only a long period oscillation. We probably are not
resolving the individual grooves made by the diamond, but only
multiples thereof. The height and slope distribution func-
tions on Slide 13 are reasonably good Gaussians even though
there must be obvious periodicity in the surface.

As a final set of statistics, we see in Slide 14 a
tracing of a holographic grating with a nominally sinusoidal
groove shape formed in a photographic emulsion. This sample
was kindly furnished to us by John Stover of Dow Chemical
Company, Rocky Flats, Colorado. The autocovariance function
is for only one scan and clearly shows the periodicity of the
surface. The height distribution function on Slide 15 is
clearly not Gaussian, and I did not even attempt to put a
Gaussian curve through the data.

Our plans for the future include increasing the sensi-
tivity of the scanning camera so we can obtain scans from many
more portions of the surface. Most of the data shown here are
averages of 8-10 separate scans. We also hope to automate
the scanning interferometer so that we can make equally spaced
scans adjacent to each other to obtain statistical data on
a square one mm on a side.

In conclusion, I have described a type of interferometer
which can be used to obtain statistical information about the
topography of optical surfaces. This instrument can distin-
guish height differences of only a few angstroms and has a
lateral resolution of about 2 microns. Using the statistics
of the surface, we hope to be able to predict the scattering
properties of the surface.
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